মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2x-y=4,3x-5y=15
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x-y=4
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=y+4
সমীকরণের উভয় দিকে y যোগ করুন।
x=\frac{1}{2}\left(y+4\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{1}{2}y+2
\frac{1}{2} কে y+4 বার গুণ করুন।
3\left(\frac{1}{2}y+2\right)-5y=15
অন্য সমীকরণ 3x-5y=15 এ x এর জন্য \frac{y}{2}+2 বিপরীত করু ন।
\frac{3}{2}y+6-5y=15
3 কে \frac{y}{2}+2 বার গুণ করুন।
-\frac{7}{2}y+6=15
-5y এ \frac{3y}{2} যোগ করুন।
-\frac{7}{2}y=9
সমীকরণের উভয় দিক থেকে 6 বাদ দিন।
y=-\frac{18}{7}
-\frac{7}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{1}{2}\left(-\frac{18}{7}\right)+2
x=\frac{1}{2}y+2 এ y এর জন্য পরিবর্ত হিসাবে -\frac{18}{7} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-\frac{9}{7}+2
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে \frac{1}{2} কে -\frac{18}{7} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=\frac{5}{7}
-\frac{9}{7} এ 2 যোগ করুন।
x=\frac{5}{7},y=-\frac{18}{7}
সিস্টেম এখন সমাধান করা হয়েছে।
2x-y=4,3x-5y=15
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\15\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}4\\15\end{matrix}\right)
\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}4\\15\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}4\\15\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-\left(-3\right)}&-\frac{-1}{2\left(-5\right)-\left(-3\right)}\\-\frac{3}{2\left(-5\right)-\left(-3\right)}&\frac{2}{2\left(-5\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\15\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}&-\frac{1}{7}\\\frac{3}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}4\\15\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}\times 4-\frac{1}{7}\times 15\\\frac{3}{7}\times 4-\frac{2}{7}\times 15\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}\\-\frac{18}{7}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{5}{7},y=-\frac{18}{7}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
2x-y=4,3x-5y=15
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3\times 2x+3\left(-1\right)y=3\times 4,2\times 3x+2\left(-5\right)y=2\times 15
2x এবং 3x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
6x-3y=12,6x-10y=30
সিমপ্লিফাই।
6x-6x-3y+10y=12-30
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 6x-3y=12 থেকে 6x-10y=30 বাদ দিন।
-3y+10y=12-30
-6x এ 6x যোগ করুন। টার্ম 6x এবং -6x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
7y=12-30
10y এ -3y যোগ করুন।
7y=-18
-30 এ 12 যোগ করুন।
y=-\frac{18}{7}
7 দিয়ে উভয় দিককে ভাগ করুন।
3x-5\left(-\frac{18}{7}\right)=15
3x-5y=15 এ y এর জন্য পরিবর্ত হিসাবে -\frac{18}{7} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
3x+\frac{90}{7}=15
-5 কে -\frac{18}{7} বার গুণ করুন।
3x=\frac{15}{7}
সমীকরণের উভয় দিক থেকে \frac{90}{7} বাদ দিন।
x=\frac{5}{7}
3 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{5}{7},y=-\frac{18}{7}
সিস্টেম এখন সমাধান করা হয়েছে।