\left\{ \begin{array} { l } { 2 x - 6 y = - 2 } \\ { 5 x - 3 y = 31 } \end{array} \right.
x, y এর জন্য সমাধান করুন
x=8
y=3
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
2x-6y=-2,5x-3y=31
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x-6y=-2
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=6y-2
সমীকরণের উভয় দিকে 6y যোগ করুন।
x=\frac{1}{2}\left(6y-2\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
x=3y-1
\frac{1}{2} কে 6y-2 বার গুণ করুন।
5\left(3y-1\right)-3y=31
অন্য সমীকরণ 5x-3y=31 এ x এর জন্য 3y-1 বিপরীত করু ন।
15y-5-3y=31
5 কে 3y-1 বার গুণ করুন।
12y-5=31
-3y এ 15y যোগ করুন।
12y=36
সমীকরণের উভয় দিকে 5 যোগ করুন।
y=3
12 দিয়ে উভয় দিককে ভাগ করুন।
x=3\times 3-1
x=3y-1 এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=9-1
3 কে 3 বার গুণ করুন।
x=8
9 এ -1 যোগ করুন।
x=8,y=3
সিস্টেম এখন সমাধান করা হয়েছে।
2x-6y=-2,5x-3y=31
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&-6\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\31\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}2&-6\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-2\\31\end{matrix}\right)
\left(\begin{matrix}2&-6\\5&-3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-2\\31\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-2\\31\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-\left(-6\times 5\right)}&-\frac{-6}{2\left(-3\right)-\left(-6\times 5\right)}\\-\frac{5}{2\left(-3\right)-\left(-6\times 5\right)}&\frac{2}{2\left(-3\right)-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-2\\31\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}&\frac{1}{4}\\-\frac{5}{24}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}-2\\31\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}\left(-2\right)+\frac{1}{4}\times 31\\-\frac{5}{24}\left(-2\right)+\frac{1}{12}\times 31\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\3\end{matrix}\right)
পাটিগণিত করুন।
x=8,y=3
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
2x-6y=-2,5x-3y=31
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
5\times 2x+5\left(-6\right)y=5\left(-2\right),2\times 5x+2\left(-3\right)y=2\times 31
2x এবং 5x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
10x-30y=-10,10x-6y=62
সিমপ্লিফাই।
10x-10x-30y+6y=-10-62
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 10x-30y=-10 থেকে 10x-6y=62 বাদ দিন।
-30y+6y=-10-62
-10x এ 10x যোগ করুন। টার্ম 10x এবং -10x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-24y=-10-62
6y এ -30y যোগ করুন।
-24y=-72
-62 এ -10 যোগ করুন।
y=3
-24 দিয়ে উভয় দিককে ভাগ করুন।
5x-3\times 3=31
5x-3y=31 এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
5x-9=31
-3 কে 3 বার গুণ করুন।
5x=40
সমীকরণের উভয় দিকে 9 যোগ করুন।
x=8
5 দিয়ে উভয় দিককে ভাগ করুন।
x=8,y=3
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}