মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2x+y=4,3x+2y=4
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x+y=4
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=-y+4
সমীকরণের উভয় দিক থেকে y বাদ দিন।
x=\frac{1}{2}\left(-y+4\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{1}{2}y+2
\frac{1}{2} কে -y+4 বার গুণ করুন।
3\left(-\frac{1}{2}y+2\right)+2y=4
অন্য সমীকরণ 3x+2y=4 এ x এর জন্য -\frac{y}{2}+2 বিপরীত করু ন।
-\frac{3}{2}y+6+2y=4
3 কে -\frac{y}{2}+2 বার গুণ করুন।
\frac{1}{2}y+6=4
2y এ -\frac{3y}{2} যোগ করুন।
\frac{1}{2}y=-2
সমীকরণের উভয় দিক থেকে 6 বাদ দিন।
y=-4
2 দিয়ে উভয় দিককে গুণ করুন।
x=-\frac{1}{2}\left(-4\right)+2
x=-\frac{1}{2}y+2 এ y এর জন্য পরিবর্ত হিসাবে -4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=2+2
-\frac{1}{2} কে -4 বার গুণ করুন।
x=4
2 এ 2 যোগ করুন।
x=4,y=-4
সিস্টেম এখন সমাধান করা হয়েছে।
2x+y=4,3x+2y=4
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}2&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
\left(\begin{matrix}2&1\\3&2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3}&-\frac{1}{2\times 2-3}\\-\frac{3}{2\times 2-3}&\frac{2}{2\times 2-3}\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\-3&2\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 4-4\\-3\times 4+2\times 4\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-4\end{matrix}\right)
পাটিগণিত করুন।
x=4,y=-4
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
2x+y=4,3x+2y=4
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3\times 2x+3y=3\times 4,2\times 3x+2\times 2y=2\times 4
2x এবং 3x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
6x+3y=12,6x+4y=8
সিমপ্লিফাই।
6x-6x+3y-4y=12-8
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 6x+3y=12 থেকে 6x+4y=8 বাদ দিন।
3y-4y=12-8
-6x এ 6x যোগ করুন। টার্ম 6x এবং -6x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-y=12-8
-4y এ 3y যোগ করুন।
-y=4
-8 এ 12 যোগ করুন।
y=-4
-1 দিয়ে উভয় দিককে ভাগ করুন।
3x+2\left(-4\right)=4
3x+2y=4 এ y এর জন্য পরিবর্ত হিসাবে -4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
3x-8=4
2 কে -4 বার গুণ করুন।
3x=12
সমীকরণের উভয় দিকে 8 যোগ করুন।
x=4
3 দিয়ে উভয় দিককে ভাগ করুন।
x=4,y=-4
সিস্টেম এখন সমাধান করা হয়েছে।