মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2x+y=-2,4x+5y=8
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x+y=-2
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=-y-2
সমীকরণের উভয় দিক থেকে y বাদ দিন।
x=\frac{1}{2}\left(-y-2\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{1}{2}y-1
\frac{1}{2} কে -y-2 বার গুণ করুন।
4\left(-\frac{1}{2}y-1\right)+5y=8
অন্য সমীকরণ 4x+5y=8 এ x এর জন্য -\frac{y}{2}-1 বিপরীত করু ন।
-2y-4+5y=8
4 কে -\frac{y}{2}-1 বার গুণ করুন।
3y-4=8
5y এ -2y যোগ করুন।
3y=12
সমীকরণের উভয় দিকে 4 যোগ করুন।
y=4
3 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{1}{2}\times 4-1
x=-\frac{1}{2}y-1 এ y এর জন্য পরিবর্ত হিসাবে 4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-2-1
-\frac{1}{2} কে 4 বার গুণ করুন।
x=-3
-2 এ -1 যোগ করুন।
x=-3,y=4
সিস্টেম এখন সমাধান করা হয়েছে।
2x+y=-2,4x+5y=8
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&1\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\8\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}2&1\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
\left(\begin{matrix}2&1\\4&5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-4}&-\frac{1}{2\times 5-4}\\-\frac{4}{2\times 5-4}&\frac{2}{2\times 5-4}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}&-\frac{1}{6}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\left(-2\right)-\frac{1}{6}\times 8\\-\frac{2}{3}\left(-2\right)+\frac{1}{3}\times 8\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\4\end{matrix}\right)
পাটিগণিত করুন।
x=-3,y=4
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
2x+y=-2,4x+5y=8
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
4\times 2x+4y=4\left(-2\right),2\times 4x+2\times 5y=2\times 8
2x এবং 4x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 4 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
8x+4y=-8,8x+10y=16
সিমপ্লিফাই।
8x-8x+4y-10y=-8-16
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 8x+4y=-8 থেকে 8x+10y=16 বাদ দিন।
4y-10y=-8-16
-8x এ 8x যোগ করুন। টার্ম 8x এবং -8x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-6y=-8-16
-10y এ 4y যোগ করুন।
-6y=-24
-16 এ -8 যোগ করুন।
y=4
-6 দিয়ে উভয় দিককে ভাগ করুন।
4x+5\times 4=8
4x+5y=8 এ y এর জন্য পরিবর্ত হিসাবে 4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
4x+20=8
5 কে 4 বার গুণ করুন।
4x=-12
সমীকরণের উভয় দিক থেকে 20 বাদ দিন।
x=-3
4 দিয়ে উভয় দিককে ভাগ করুন।
x=-3,y=4
সিস্টেম এখন সমাধান করা হয়েছে।