মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2x+3y=780,5x+4y=1320
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x+3y=780
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=-3y+780
সমীকরণের উভয় দিক থেকে 3y বাদ দিন।
x=\frac{1}{2}\left(-3y+780\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{3}{2}y+390
\frac{1}{2} কে -3y+780 বার গুণ করুন।
5\left(-\frac{3}{2}y+390\right)+4y=1320
অন্য সমীকরণ 5x+4y=1320 এ x এর জন্য -\frac{3y}{2}+390 বিপরীত করু ন।
-\frac{15}{2}y+1950+4y=1320
5 কে -\frac{3y}{2}+390 বার গুণ করুন।
-\frac{7}{2}y+1950=1320
4y এ -\frac{15y}{2} যোগ করুন।
-\frac{7}{2}y=-630
সমীকরণের উভয় দিক থেকে 1950 বাদ দিন।
y=180
-\frac{7}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{3}{2}\times 180+390
x=-\frac{3}{2}y+390 এ y এর জন্য পরিবর্ত হিসাবে 180 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-270+390
-\frac{3}{2} কে 180 বার গুণ করুন।
x=120
-270 এ 390 যোগ করুন।
x=120,y=180
সিস্টেম এখন সমাধান করা হয়েছে।
2x+3y=780,5x+4y=1320
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}780\\1320\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}780\\1320\end{matrix}\right)
\left(\begin{matrix}2&3\\5&4\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}780\\1320\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}780\\1320\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 5}&-\frac{3}{2\times 4-3\times 5}\\-\frac{5}{2\times 4-3\times 5}&\frac{2}{2\times 4-3\times 5}\end{matrix}\right)\left(\begin{matrix}780\\1320\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}&\frac{3}{7}\\\frac{5}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}780\\1320\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}\times 780+\frac{3}{7}\times 1320\\\frac{5}{7}\times 780-\frac{2}{7}\times 1320\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}120\\180\end{matrix}\right)
পাটিগণিত করুন।
x=120,y=180
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
2x+3y=780,5x+4y=1320
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
5\times 2x+5\times 3y=5\times 780,2\times 5x+2\times 4y=2\times 1320
2x এবং 5x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
10x+15y=3900,10x+8y=2640
সিমপ্লিফাই।
10x-10x+15y-8y=3900-2640
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 10x+15y=3900 থেকে 10x+8y=2640 বাদ দিন।
15y-8y=3900-2640
-10x এ 10x যোগ করুন। টার্ম 10x এবং -10x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
7y=3900-2640
-8y এ 15y যোগ করুন।
7y=1260
-2640 এ 3900 যোগ করুন।
y=180
7 দিয়ে উভয় দিককে ভাগ করুন।
5x+4\times 180=1320
5x+4y=1320 এ y এর জন্য পরিবর্ত হিসাবে 180 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
5x+720=1320
4 কে 180 বার গুণ করুন।
5x=600
সমীকরণের উভয় দিক থেকে 720 বাদ দিন।
x=120
5 দিয়ে উভয় দিককে ভাগ করুন।
x=120,y=180
সিস্টেম এখন সমাধান করা হয়েছে।