\left\{ \begin{array} { l } { 2 x + 14 y = - 28 } \\ { - 4 x - 14 y = 28 } \end{array} \right.
x, y এর জন্য সমাধান করুন
x=0
y=-2
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
2x+14y=-28,-4x-14y=28
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x+14y=-28
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=-14y-28
সমীকরণের উভয় দিক থেকে 14y বাদ দিন।
x=\frac{1}{2}\left(-14y-28\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
x=-7y-14
\frac{1}{2} কে -14y-28 বার গুণ করুন।
-4\left(-7y-14\right)-14y=28
অন্য সমীকরণ -4x-14y=28 এ x এর জন্য -7y-14 বিপরীত করু ন।
28y+56-14y=28
-4 কে -7y-14 বার গুণ করুন।
14y+56=28
-14y এ 28y যোগ করুন।
14y=-28
সমীকরণের উভয় দিক থেকে 56 বাদ দিন।
y=-2
14 দিয়ে উভয় দিককে ভাগ করুন।
x=-7\left(-2\right)-14
x=-7y-14 এ y এর জন্য পরিবর্ত হিসাবে -2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=14-14
-7 কে -2 বার গুণ করুন।
x=0
14 এ -14 যোগ করুন।
x=0,y=-2
সিস্টেম এখন সমাধান করা হয়েছে।
2x+14y=-28,-4x-14y=28
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-28\\28\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{14}{2\left(-14\right)-14\left(-4\right)}&-\frac{14}{2\left(-14\right)-14\left(-4\right)}\\-\frac{-4}{2\left(-14\right)-14\left(-4\right)}&\frac{2}{2\left(-14\right)-14\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-28\\28\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&-\frac{1}{2}\\\frac{1}{7}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}-28\\28\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-28\right)-\frac{1}{2}\times 28\\\frac{1}{7}\left(-28\right)+\frac{1}{14}\times 28\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
পাটিগণিত করুন।
x=0,y=-2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
2x+14y=-28,-4x-14y=28
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-4\times 2x-4\times 14y=-4\left(-28\right),2\left(-4\right)x+2\left(-14\right)y=2\times 28
2x এবং -4x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -4 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
-8x-56y=112,-8x-28y=56
সিমপ্লিফাই।
-8x+8x-56y+28y=112-56
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -8x-56y=112 থেকে -8x-28y=56 বাদ দিন।
-56y+28y=112-56
8x এ -8x যোগ করুন। টার্ম -8x এবং 8x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-28y=112-56
28y এ -56y যোগ করুন।
-28y=56
-56 এ 112 যোগ করুন।
y=-2
-28 দিয়ে উভয় দিককে ভাগ করুন।
-4x-14\left(-2\right)=28
-4x-14y=28 এ y এর জন্য পরিবর্ত হিসাবে -2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-4x+28=28
-14 কে -2 বার গুণ করুন।
-4x=0
সমীকরণের উভয় দিক থেকে 28 বাদ দিন।
x=0
-4 দিয়ে উভয় দিককে ভাগ করুন।
x=0,y=-2
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}