\left\{ \begin{array} { l } { 2 m + 3 n = 22 } \\ { m - 2 n = 6 } \end{array} \right.
m, n এর জন্য সমাধান করুন
m = \frac{62}{7} = 8\frac{6}{7} \approx 8.857142857
n = \frac{10}{7} = 1\frac{3}{7} \approx 1.428571429
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
2m+3n=22,m-2n=6
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2m+3n=22
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের m পৃথক করে m-এর জন্য সমাধান করুন।
2m=-3n+22
সমীকরণের উভয় দিক থেকে 3n বাদ দিন।
m=\frac{1}{2}\left(-3n+22\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
m=-\frac{3}{2}n+11
\frac{1}{2} কে -3n+22 বার গুণ করুন।
-\frac{3}{2}n+11-2n=6
অন্য সমীকরণ m-2n=6 এ m এর জন্য -\frac{3n}{2}+11 বিপরীত করু ন।
-\frac{7}{2}n+11=6
-2n এ -\frac{3n}{2} যোগ করুন।
-\frac{7}{2}n=-5
সমীকরণের উভয় দিক থেকে 11 বাদ দিন।
n=\frac{10}{7}
-\frac{7}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
m=-\frac{3}{2}\times \frac{10}{7}+11
m=-\frac{3}{2}n+11 এ n এর জন্য পরিবর্ত হিসাবে \frac{10}{7} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি m এর জন্য সরাসরি সমাধান করতে পারেন।
m=-\frac{15}{7}+11
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে -\frac{3}{2} কে \frac{10}{7} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
m=\frac{62}{7}
-\frac{15}{7} এ 11 যোগ করুন।
m=\frac{62}{7},n=\frac{10}{7}
সিস্টেম এখন সমাধান করা হয়েছে।
2m+3n=22,m-2n=6
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&3\\1&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}22\\6\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}2&3\\1&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}22\\6\end{matrix}\right)
\left(\begin{matrix}2&3\\1&-2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}22\\6\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}22\\6\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-3}&-\frac{3}{2\left(-2\right)-3}\\-\frac{1}{2\left(-2\right)-3}&\frac{2}{2\left(-2\right)-3}\end{matrix}\right)\left(\begin{matrix}22\\6\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{3}{7}\\\frac{1}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}22\\6\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 22+\frac{3}{7}\times 6\\\frac{1}{7}\times 22-\frac{2}{7}\times 6\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{62}{7}\\\frac{10}{7}\end{matrix}\right)
পাটিগণিত করুন।
m=\frac{62}{7},n=\frac{10}{7}
ম্যাট্রিক্স এলিমেন্ট m এবং n বের করুন।
2m+3n=22,m-2n=6
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2m+3n=22,2m+2\left(-2\right)n=2\times 6
2m এবং m সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
2m+3n=22,2m-4n=12
সিমপ্লিফাই।
2m-2m+3n+4n=22-12
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 2m+3n=22 থেকে 2m-4n=12 বাদ দিন।
3n+4n=22-12
-2m এ 2m যোগ করুন। টার্ম 2m এবং -2m বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
7n=22-12
4n এ 3n যোগ করুন।
7n=10
-12 এ 22 যোগ করুন।
n=\frac{10}{7}
7 দিয়ে উভয় দিককে ভাগ করুন।
m-2\times \frac{10}{7}=6
m-2n=6 এ n এর জন্য পরিবর্ত হিসাবে \frac{10}{7} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি m এর জন্য সরাসরি সমাধান করতে পারেন।
m-\frac{20}{7}=6
-2 কে \frac{10}{7} বার গুণ করুন।
m=\frac{62}{7}
সমীকরণের উভয় দিকে \frac{20}{7} যোগ করুন।
m=\frac{62}{7},n=\frac{10}{7}
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}