\left\{ \begin{array} { l } { - 6 x + 5 y = 1 } \\ { 6 x + 4 y = - 10 } \end{array} \right.
x, y এর জন্য সমাধান করুন
x=-1
y=-1
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
-6x+5y=1,6x+4y=-10
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-6x+5y=1
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-6x=-5y+1
সমীকরণের উভয় দিক থেকে 5y বাদ দিন।
x=-\frac{1}{6}\left(-5y+1\right)
-6 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{5}{6}y-\frac{1}{6}
-\frac{1}{6} কে -5y+1 বার গুণ করুন।
6\left(\frac{5}{6}y-\frac{1}{6}\right)+4y=-10
অন্য সমীকরণ 6x+4y=-10 এ x এর জন্য \frac{5y-1}{6} বিপরীত করু ন।
5y-1+4y=-10
6 কে \frac{5y-1}{6} বার গুণ করুন।
9y-1=-10
4y এ 5y যোগ করুন।
9y=-9
সমীকরণের উভয় দিকে 1 যোগ করুন।
y=-1
9 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{5}{6}\left(-1\right)-\frac{1}{6}
x=\frac{5}{6}y-\frac{1}{6} এ y এর জন্য পরিবর্ত হিসাবে -1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{-5-1}{6}
\frac{5}{6} কে -1 বার গুণ করুন।
x=-1
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{5}{6} এ -\frac{1}{6} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-1,y=-1
সিস্টেম এখন সমাধান করা হয়েছে।
-6x+5y=1,6x+4y=-10
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-6&5\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-10\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-6&5\\6&4\end{matrix}\right))\left(\begin{matrix}-6&5\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&5\\6&4\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
\left(\begin{matrix}-6&5\\6&4\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&5\\6&4\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&5\\6&4\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{-6\times 4-5\times 6}&-\frac{5}{-6\times 4-5\times 6}\\-\frac{6}{-6\times 4-5\times 6}&-\frac{6}{-6\times 4-5\times 6}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{27}&\frac{5}{54}\\\frac{1}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{27}+\frac{5}{54}\left(-10\right)\\\frac{1}{9}+\frac{1}{9}\left(-10\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-1\end{matrix}\right)
পাটিগণিত করুন।
x=-1,y=-1
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-6x+5y=1,6x+4y=-10
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
6\left(-6\right)x+6\times 5y=6,-6\times 6x-6\times 4y=-6\left(-10\right)
-6x এবং 6x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 6 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -6 দিয়ে গুণ করুন।
-36x+30y=6,-36x-24y=60
সিমপ্লিফাই।
-36x+36x+30y+24y=6-60
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -36x+30y=6 থেকে -36x-24y=60 বাদ দিন।
30y+24y=6-60
36x এ -36x যোগ করুন। টার্ম -36x এবং 36x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
54y=6-60
24y এ 30y যোগ করুন।
54y=-54
-60 এ 6 যোগ করুন।
y=-1
54 দিয়ে উভয় দিককে ভাগ করুন।
6x+4\left(-1\right)=-10
6x+4y=-10 এ y এর জন্য পরিবর্ত হিসাবে -1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
6x-4=-10
4 কে -1 বার গুণ করুন।
6x=-6
সমীকরণের উভয় দিকে 4 যোগ করুন।
x=-1
6 দিয়ে উভয় দিককে ভাগ করুন।
x=-1,y=-1
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}