\left\{ \begin{array} { l } { - 4 x - 2 y = - 16 } \\ { 7 x - 5 y = 11 } \end{array} \right.
x, y এর জন্য সমাধান করুন
x=3
y=2
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
-4x-2y=-16,7x-5y=11
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-4x-2y=-16
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-4x=2y-16
সমীকরণের উভয় দিকে 2y যোগ করুন।
x=-\frac{1}{4}\left(2y-16\right)
-4 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{1}{2}y+4
-\frac{1}{4} কে -16+2y বার গুণ করুন।
7\left(-\frac{1}{2}y+4\right)-5y=11
অন্য সমীকরণ 7x-5y=11 এ x এর জন্য -\frac{y}{2}+4 বিপরীত করু ন।
-\frac{7}{2}y+28-5y=11
7 কে -\frac{y}{2}+4 বার গুণ করুন।
-\frac{17}{2}y+28=11
-5y এ -\frac{7y}{2} যোগ করুন।
-\frac{17}{2}y=-17
সমীকরণের উভয় দিক থেকে 28 বাদ দিন।
y=2
-\frac{17}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{1}{2}\times 2+4
x=-\frac{1}{2}y+4 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-1+4
-\frac{1}{2} কে 2 বার গুণ করুন।
x=3
-1 এ 4 যোগ করুন।
x=3,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
-4x-2y=-16,7x-5y=11
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\11\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-16\\11\end{matrix}\right)
\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-16\\11\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-16\\11\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-4\left(-5\right)-\left(-2\times 7\right)}&-\frac{-2}{-4\left(-5\right)-\left(-2\times 7\right)}\\-\frac{7}{-4\left(-5\right)-\left(-2\times 7\right)}&-\frac{4}{-4\left(-5\right)-\left(-2\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-16\\11\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{34}&\frac{1}{17}\\-\frac{7}{34}&-\frac{2}{17}\end{matrix}\right)\left(\begin{matrix}-16\\11\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{34}\left(-16\right)+\frac{1}{17}\times 11\\-\frac{7}{34}\left(-16\right)-\frac{2}{17}\times 11\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
পাটিগণিত করুন।
x=3,y=2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-4x-2y=-16,7x-5y=11
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
7\left(-4\right)x+7\left(-2\right)y=7\left(-16\right),-4\times 7x-4\left(-5\right)y=-4\times 11
-4x এবং 7x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 7 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -4 দিয়ে গুণ করুন।
-28x-14y=-112,-28x+20y=-44
সিমপ্লিফাই।
-28x+28x-14y-20y=-112+44
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -28x-14y=-112 থেকে -28x+20y=-44 বাদ দিন।
-14y-20y=-112+44
28x এ -28x যোগ করুন। টার্ম -28x এবং 28x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-34y=-112+44
-20y এ -14y যোগ করুন।
-34y=-68
44 এ -112 যোগ করুন।
y=2
-34 দিয়ে উভয় দিককে ভাগ করুন।
7x-5\times 2=11
7x-5y=11 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
7x-10=11
-5 কে 2 বার গুণ করুন।
7x=21
সমীকরণের উভয় দিকে 10 যোগ করুন।
x=3
7 দিয়ে উভয় দিককে ভাগ করুন।
x=3,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}