মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-10x-3y=9,-5x+5y=-2
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-10x-3y=9
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-10x=3y+9
সমীকরণের উভয় দিকে 3y যোগ করুন।
x=-\frac{1}{10}\left(3y+9\right)
-10 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{3}{10}y-\frac{9}{10}
-\frac{1}{10} কে 9+3y বার গুণ করুন।
-5\left(-\frac{3}{10}y-\frac{9}{10}\right)+5y=-2
অন্য সমীকরণ -5x+5y=-2 এ x এর জন্য \frac{-3y-9}{10} বিপরীত করু ন।
\frac{3}{2}y+\frac{9}{2}+5y=-2
-5 কে \frac{-3y-9}{10} বার গুণ করুন।
\frac{13}{2}y+\frac{9}{2}=-2
5y এ \frac{3y}{2} যোগ করুন।
\frac{13}{2}y=-\frac{13}{2}
সমীকরণের উভয় দিক থেকে \frac{9}{2} বাদ দিন।
y=-1
\frac{13}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{3}{10}\left(-1\right)-\frac{9}{10}
x=-\frac{3}{10}y-\frac{9}{10} এ y এর জন্য পরিবর্ত হিসাবে -1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{3-9}{10}
-\frac{3}{10} কে -1 বার গুণ করুন।
x=-\frac{3}{5}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{3}{10} এ -\frac{9}{10} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-\frac{3}{5},y=-1
সিস্টেম এখন সমাধান করা হয়েছে।
-10x-3y=9,-5x+5y=-2
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-2\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-10\times 5-\left(-3\left(-5\right)\right)}&-\frac{-3}{-10\times 5-\left(-3\left(-5\right)\right)}\\-\frac{-5}{-10\times 5-\left(-3\left(-5\right)\right)}&-\frac{10}{-10\times 5-\left(-3\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}9\\-2\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&-\frac{3}{65}\\-\frac{1}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}9\\-2\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}\times 9-\frac{3}{65}\left(-2\right)\\-\frac{1}{13}\times 9+\frac{2}{13}\left(-2\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\\-1\end{matrix}\right)
পাটিগণিত করুন।
x=-\frac{3}{5},y=-1
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-10x-3y=9,-5x+5y=-2
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-5\left(-10\right)x-5\left(-3\right)y=-5\times 9,-10\left(-5\right)x-10\times 5y=-10\left(-2\right)
-10x এবং -5x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -5 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -10 দিয়ে গুণ করুন।
50x+15y=-45,50x-50y=20
সিমপ্লিফাই।
50x-50x+15y+50y=-45-20
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 50x+15y=-45 থেকে 50x-50y=20 বাদ দিন।
15y+50y=-45-20
-50x এ 50x যোগ করুন। টার্ম 50x এবং -50x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
65y=-45-20
50y এ 15y যোগ করুন।
65y=-65
-20 এ -45 যোগ করুন।
y=-1
65 দিয়ে উভয় দিককে ভাগ করুন।
-5x+5\left(-1\right)=-2
-5x+5y=-2 এ y এর জন্য পরিবর্ত হিসাবে -1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-5x-5=-2
5 কে -1 বার গুণ করুন।
-5x=3
সমীকরণের উভয় দিকে 5 যোগ করুন।
x=-\frac{3}{5}
-5 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{3}{5},y=-1
সিস্টেম এখন সমাধান করা হয়েছে।