\left\{ \begin{array} { l } { \frac { 2 x + 7 y } { 3 } + y = 0 } \\ { x + \frac { 5 y - 1 } { 2 } = 2 - x } \end{array} \right.
x, y এর জন্য সমাধান করুন
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
y=-\frac{1}{3}\approx -0.333333333
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
2x+7y+3y=0
প্রথম সমীকরণটির সরলীকরণ করুন। সমীকরণের উভয় দিককে 3 দিয়ে গুণ করুন।
2x+10y=0
10y পেতে 7y এবং 3y একত্রিত করুন।
2x+5y-1=4-2x
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। সমীকরণের উভয় দিককে 2 দিয়ে গুণ করুন।
2x+5y-1+2x=4
উভয় সাইডে 2x যোগ করুন৷
4x+5y-1=4
4x পেতে 2x এবং 2x একত্রিত করুন।
4x+5y=4+1
উভয় সাইডে 1 যোগ করুন৷
4x+5y=5
5 পেতে 4 এবং 1 যোগ করুন।
2x+10y=0,4x+5y=5
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x+10y=0
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=-10y
সমীকরণের উভয় দিক থেকে 10y বাদ দিন।
x=\frac{1}{2}\left(-10\right)y
2 দিয়ে উভয় দিককে ভাগ করুন।
x=-5y
\frac{1}{2} কে -10y বার গুণ করুন।
4\left(-5\right)y+5y=5
অন্য সমীকরণ 4x+5y=5 এ x এর জন্য -5y বিপরীত করু ন।
-20y+5y=5
4 কে -5y বার গুণ করুন।
-15y=5
5y এ -20y যোগ করুন।
y=-\frac{1}{3}
-15 দিয়ে উভয় দিককে ভাগ করুন।
x=-5\left(-\frac{1}{3}\right)
x=-5y এ y এর জন্য পরিবর্ত হিসাবে -\frac{1}{3} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{5}{3}
-5 কে -\frac{1}{3} বার গুণ করুন।
x=\frac{5}{3},y=-\frac{1}{3}
সিস্টেম এখন সমাধান করা হয়েছে।
2x+7y+3y=0
প্রথম সমীকরণটির সরলীকরণ করুন। সমীকরণের উভয় দিককে 3 দিয়ে গুণ করুন।
2x+10y=0
10y পেতে 7y এবং 3y একত্রিত করুন।
2x+5y-1=4-2x
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। সমীকরণের উভয় দিককে 2 দিয়ে গুণ করুন।
2x+5y-1+2x=4
উভয় সাইডে 2x যোগ করুন৷
4x+5y-1=4
4x পেতে 2x এবং 2x একত্রিত করুন।
4x+5y=4+1
উভয় সাইডে 1 যোগ করুন৷
4x+5y=5
5 পেতে 4 এবং 1 যোগ করুন।
2x+10y=0,4x+5y=5
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&10\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&10\\4&5\end{matrix}\right))\left(\begin{matrix}2&10\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&10\\4&5\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
\left(\begin{matrix}2&10\\4&5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&10\\4&5\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&10\\4&5\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-10\times 4}&-\frac{10}{2\times 5-10\times 4}\\-\frac{4}{2\times 5-10\times 4}&\frac{2}{2\times 5-10\times 4}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{1}{3}\\\frac{2}{15}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 5\\-\frac{1}{15}\times 5\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\-\frac{1}{3}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{5}{3},y=-\frac{1}{3}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
2x+7y+3y=0
প্রথম সমীকরণটির সরলীকরণ করুন। সমীকরণের উভয় দিককে 3 দিয়ে গুণ করুন।
2x+10y=0
10y পেতে 7y এবং 3y একত্রিত করুন।
2x+5y-1=4-2x
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। সমীকরণের উভয় দিককে 2 দিয়ে গুণ করুন।
2x+5y-1+2x=4
উভয় সাইডে 2x যোগ করুন৷
4x+5y-1=4
4x পেতে 2x এবং 2x একত্রিত করুন।
4x+5y=4+1
উভয় সাইডে 1 যোগ করুন৷
4x+5y=5
5 পেতে 4 এবং 1 যোগ করুন।
2x+10y=0,4x+5y=5
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
4\times 2x+4\times 10y=0,2\times 4x+2\times 5y=2\times 5
2x এবং 4x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 4 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
8x+40y=0,8x+10y=10
সিমপ্লিফাই।
8x-8x+40y-10y=-10
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 8x+40y=0 থেকে 8x+10y=10 বাদ দিন।
40y-10y=-10
-8x এ 8x যোগ করুন। টার্ম 8x এবং -8x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
30y=-10
-10y এ 40y যোগ করুন।
y=-\frac{1}{3}
30 দিয়ে উভয় দিককে ভাগ করুন।
4x+5\left(-\frac{1}{3}\right)=5
4x+5y=5 এ y এর জন্য পরিবর্ত হিসাবে -\frac{1}{3} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
4x-\frac{5}{3}=5
5 কে -\frac{1}{3} বার গুণ করুন।
4x=\frac{20}{3}
সমীকরণের উভয় দিকে \frac{5}{3} যোগ করুন।
x=\frac{5}{3}
4 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{5}{3},y=-\frac{1}{3}
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}