\left\{ \begin{array} { c } { - 2 x - 4 y = - 12 } \\ { 2 x + 3 y = 9 } \end{array} \right.
x, y এর জন্য সমাধান করুন
x=0
y=3
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
-2x-4y=-12,2x+3y=9
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-2x-4y=-12
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-2x=4y-12
সমীকরণের উভয় দিকে 4y যোগ করুন।
x=-\frac{1}{2}\left(4y-12\right)
-2 দিয়ে উভয় দিককে ভাগ করুন।
x=-2y+6
-\frac{1}{2} কে -12+4y বার গুণ করুন।
2\left(-2y+6\right)+3y=9
অন্য সমীকরণ 2x+3y=9 এ x এর জন্য -2y+6 বিপরীত করু ন।
-4y+12+3y=9
2 কে -2y+6 বার গুণ করুন।
-y+12=9
3y এ -4y যোগ করুন।
-y=-3
সমীকরণের উভয় দিক থেকে 12 বাদ দিন।
y=3
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=-2\times 3+6
x=-2y+6 এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-6+6
-2 কে 3 বার গুণ করুন।
x=0
-6 এ 6 যোগ করুন।
x=0,y=3
সিস্টেম এখন সমাধান করা হয়েছে।
-2x-4y=-12,2x+3y=9
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\9\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right))\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right))\left(\begin{matrix}-12\\9\end{matrix}\right)
\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right))\left(\begin{matrix}-12\\9\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right))\left(\begin{matrix}-12\\9\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-2\times 3-\left(-4\times 2\right)}&-\frac{-4}{-2\times 3-\left(-4\times 2\right)}\\-\frac{2}{-2\times 3-\left(-4\times 2\right)}&-\frac{2}{-2\times 3-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-12\\9\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&2\\-1&-1\end{matrix}\right)\left(\begin{matrix}-12\\9\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\left(-12\right)+2\times 9\\-\left(-12\right)-9\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\3\end{matrix}\right)
পাটিগণিত করুন।
x=0,y=3
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-2x-4y=-12,2x+3y=9
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2\left(-2\right)x+2\left(-4\right)y=2\left(-12\right),-2\times 2x-2\times 3y=-2\times 9
-2x এবং 2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -2 দিয়ে গুণ করুন।
-4x-8y=-24,-4x-6y=-18
সিমপ্লিফাই।
-4x+4x-8y+6y=-24+18
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -4x-8y=-24 থেকে -4x-6y=-18 বাদ দিন।
-8y+6y=-24+18
4x এ -4x যোগ করুন। টার্ম -4x এবং 4x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-2y=-24+18
6y এ -8y যোগ করুন।
-2y=-6
18 এ -24 যোগ করুন।
y=3
-2 দিয়ে উভয় দিককে ভাগ করুন।
2x+3\times 3=9
2x+3y=9 এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
2x+9=9
3 কে 3 বার গুণ করুন।
2x=0
সমীকরণের উভয় দিক থেকে 9 বাদ দিন।
x=0
2 দিয়ে উভয় দিককে ভাগ করুন।
x=0,y=3
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}