মূল বিষয়বস্তুতে এড়িয়ে যান
মূল্যায়ন করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\int x+\sin(x)+12\mathrm{d}x
Evaluate the indefinite integral first.
\int x\mathrm{d}x+\int \sin(x)\mathrm{d}x+\int 12\mathrm{d}x
Integrate the sum term by term.
\frac{x^{2}}{2}+\int \sin(x)\mathrm{d}x+\int 12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}-\cos(x)+\int 12\mathrm{d}x
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result.
\frac{x^{2}}{2}-\cos(x)+12x
Find the integral of 12 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{10^{2}}{2}-\cos(10)+10\times 12-\left(\frac{5^{2}}{2}-\cos(5)+5\times 12\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{2}\left(-2\cos(10)+195+2\cos(5)\right)
সিমপ্লিফাই।