মূল বিষয়বস্তুতে এড়িয়ে যান
মূল্যায়ন করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\int x^{2}+\frac{1}{x^{3}}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int \frac{1}{x^{3}}\mathrm{d}x
Integrate the sum term by term.
\frac{x^{3}}{3}+\int \frac{1}{x^{3}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\frac{1}{2x^{2}}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{3}}\mathrm{d}x with -\frac{1}{2x^{2}}.
\frac{4^{3}}{3}-\frac{4^{-2}}{2}-\left(\frac{1^{3}}{3}-\frac{1^{-2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{687}{32}
সিমপ্লিফাই।