মূল বিষয়বস্তুতে এড়িয়ে যান
মূল্যায়ন করুন
Tick mark Image

শেয়ার করুন

\int 5x+8585+68e^{15}\mathrm{d}x
Evaluate the indefinite integral first.
\int 5x\mathrm{d}x+\int 8585\mathrm{d}x+\int 68e^{15}\mathrm{d}x
Integrate the sum term by term.
5\int x\mathrm{d}x+\int 8585\mathrm{d}x+68\int e^{15}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{5x^{2}}{2}+\int 8585\mathrm{d}x+68\int e^{15}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. 5 কে \frac{x^{2}}{2} বার গুণ করুন।
\frac{5x^{2}}{2}+8585x+68\int e^{15}\mathrm{d}x
Find the integral of 8585 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{5x^{2}}{2}+8585x+68e^{15}x
Find the integral of e^{15} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{5}{2}\times 45^{2}+8585\times 45+68e^{15}\times 45-\left(\frac{5}{2}\left(-9\right)^{2}+8585\left(-9\right)+68e^{15}\left(-9\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
468450+3672e^{15}
সিমপ্লিফাই।