মূল বিষয়বস্তুতে এড়িয়ে যান
মূল্যায়ন করুন
Tick mark Image
w.r.t. x পার্থক্য করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\int \left(\left(x^{2}\right)^{2}+2x^{2}+1\right)x\mathrm{d}x
\left(x^{2}+1\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যবহার করুন৷
\int \left(x^{4}+2x^{2}+1\right)x\mathrm{d}x
কোনো সংখ্যার পাওয়ার অন্য পাওয়ারে বাড়াতে এক্সপোনেন্টগুলোকে গুণ করুন। 4 পেতে 2 এবং 2 গুণ করুন৷
\int x^{5}+2x^{3}+x\mathrm{d}x
x^{4}+2x^{2}+1 কে x দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
\int x^{5}\mathrm{d}x+\int 2x^{3}\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
\int x^{5}\mathrm{d}x+2\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{6}}{6}+2\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}.
\frac{x^{6}}{6}+\frac{x^{4}}{2}+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. 2 কে \frac{x^{4}}{4} বার গুণ করুন।
\frac{x^{6}}{6}+\frac{x^{4}}{2}+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.