মূল বিষয়বস্তুতে এড়িয়ে যান
মূল্যায়ন করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\int x^{2}+5x+2\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int 5x\mathrm{d}x+\int 2\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x+\int 2\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}+5\int x\mathrm{d}x+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{5x^{2}}{2}+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. 5 কে \frac{x^{2}}{2} বার গুণ করুন।
\frac{x^{3}}{3}+\frac{5x^{2}}{2}+2x
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4^{3}}{3}+\frac{5}{2}\times 4^{2}+2\times 4-\left(\frac{3^{3}}{3}+\frac{5}{2}\times 3^{2}+2\times 3\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{191}{6}
সিমপ্লিফাই।