মূল বিষয়বস্তুতে এড়িয়ে যান
মূল্যায়ন করুন
Tick mark Image
w.r.t. γ পার্থক্য করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\int \int _{0}^{1}\gamma \sqrt{4r^{2}+1}\mathrm{d}r\mathrm{d}\theta
Evaluate the indefinite integral first.
\int _{0}^{1}\gamma \sqrt{4r^{2}+1}\mathrm{d}r\theta
Find the integral of \int _{0}^{1}\gamma \sqrt{4r^{2}+1}\mathrm{d}r using the table of common integrals rule \int a\mathrm{d}\theta =a\theta .
\frac{\left(2\sqrt{5}+\ln(2+\sqrt{5})\right)\gamma \theta }{4}
সিমপ্লিফাই।
\frac{1}{4}\left(2\times 5^{\frac{1}{2}}+\ln(2+5^{\frac{1}{2}})\right)\gamma \times 2\pi -\frac{1}{4}\left(2\times 5^{\frac{1}{2}}+\ln(2+5^{\frac{1}{2}})\right)\gamma \times 0
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{\left(2\sqrt{5}+\ln(2+\sqrt{5})\right)\gamma \pi }{2}
সিমপ্লিফাই।