মূল বিষয়বস্তুতে এড়িয়ে যান
মূল্যায়ন করুন
Tick mark Image
w.r.t. y পার্থক্য করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\frac{y^{4}}{y^{1}}
এক্সপ্রেশনটিকে সরলীকরণ করার জন্য এক্সপোনেন্টের নিয়ম ব্যবহার করুন।
y^{4-1}
একই বেসের পাওয়ারগুলোর ভাগ করতে লবের এক্সপোনেন্ট থেকে হরের এক্সপোনেন্ট বাদ দিন।
y^{3}
4 থেকে 1 বাদ দিন।
y^{4}\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y})+\frac{1}{y}\frac{\mathrm{d}}{\mathrm{d}y}(y^{4})
যে কোনো দুটি পার্থক্যযোগ্য ফাংশনের জন্য, দুটি ফাংশনের গুণফলের ডেরিভেটিভ প্রথম ফাংশন গুণ দ্বিতীয়ের ডেরিভেটিভ ও দ্বিতীয় ফাংশন গুণ প্রথমের ডেরিভেটিভের সমষ্টি।
y^{4}\left(-1\right)y^{-1-1}+\frac{1}{y}\times 4y^{4-1}
বহুপদি সংখ্যার ডেরিভেটিভ হল সেই টার্মগুলির ডেরিভেটিভের সমষ্টি। কোনো ধ্রুবক শব্দের ডেরিভেটিভ হল 0। ax^{n} এর ডেরিভেটিভ হল nax^{n-1}।
y^{4}\left(-1\right)y^{-2}+\frac{1}{y}\times 4y^{3}
সিমপ্লিফাই।
-y^{4-2}+4y^{-1+3}
এক বেসের পাওয়ার গুণ করতে তাদের এক্সপোনেন্ট যোগ করুন।
-y^{2}+4y^{2}
সিমপ্লিফাই।
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{1}y^{4-1})
একই বেসের পাওয়ারগুলোর ভাগ করতে লবের এক্সপোনেন্ট থেকে হরের এক্সপোনেন্ট বাদ দিন।
\frac{\mathrm{d}}{\mathrm{d}y}(y^{3})
পাটিগণিত করুন।
3y^{3-1}
বহুপদি সংখ্যার ডেরিভেটিভ হল সেই টার্মগুলির ডেরিভেটিভের সমষ্টি। কোনো ধ্রুবক শব্দের ডেরিভেটিভ হল 0। ax^{n} এর ডেরিভেটিভ হল nax^{n-1}।
3y^{2}
পাটিগণিত করুন।