মূল বিষয়বস্তুতে এড়িয়ে যান
মূল্যায়ন করুন
Tick mark Image
বাস্তব অংশ
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{\left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right)}
লব এবং হরকে i-\sqrt{2} দিয়ে গুণ করে \frac{i\sqrt{2}-5}{i+\sqrt{2}} এর হরকে মূলদ রাশিতে যুক্তিসঙ্গত করুন।
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{i^{2}-\left(\sqrt{2}\right)^{2}}
বিবেচনা করুন \left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right)। নিয়মটি ব্যবহার করে গুণকে বর্গক্ষেত্রের ভিন্নতায় রূপান্তর করা যেতে পারে: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}৷
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-1-2}
i এর বর্গ \sqrt{2} এর বর্গ
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-3}
-3 পেতে -1 থেকে 2 বাদ দিন।
\frac{-\sqrt{2}-i\left(\sqrt{2}\right)^{2}-5i+5\sqrt{2}}{-3}
i-\sqrt{2} এর প্রতিটি টার্ম দিয়ে i\sqrt{2}-5 এর প্রতিটি পদকে গুণ করার মাধ্যমে ডিস্ট্রিবিউটিভ প্রোপার্টি প্রয়োগ করুন৷
\frac{-\sqrt{2}-i\times 2-5i+5\sqrt{2}}{-3}
\sqrt{2}এর বর্গ হলো 2।
\frac{-\sqrt{2}-2i-5i+5\sqrt{2}}{-3}
-2i পেতে -i এবং 2 গুণ করুন।
\frac{-\sqrt{2}-7i+5\sqrt{2}}{-3}
-7i পেতে -2i থেকে 5i বাদ দিন।
\frac{4\sqrt{2}-7i}{-3}
4\sqrt{2} পেতে -\sqrt{2} এবং 5\sqrt{2} একত্রিত করুন।
\frac{-4\sqrt{2}+7i}{3}
-1 দ্বারা লব এবং হর উভয়কে গুণ করুন।