x এর জন্য সমাধান করুন
x=1
x=4
গ্রাফ
কুইজ
Quadratic Equation
এর অনুরূপ 5টি প্রশ্ন:
\frac { 25 + x ^ { 2 } - 21 } { 10 x } = \frac { 1 } { 2 }
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
25+x^{2}-21=5x
ভ্যারিয়েবল x 0-এর সমান হতে পারে না যেহেতু শূন্য দ্বারা ভাগ নির্ধারিত নয়। সমীকরণের উভয় দিককে 10x দিয়ে গুন করুন, 10x,2 এর লঘিষ্ট সাধারণ গুণিতক।
4+x^{2}=5x
4 পেতে 25 থেকে 21 বাদ দিন।
4+x^{2}-5x=0
উভয় দিক থেকে 5x বিয়োগ করুন।
x^{2}-5x+4=0
বহুপদটিকে স্ট্যান্ডার্ড ফর্মে দেখাতে পুনরায় সাজান। টার্ম উচ্চতর থেকে নিম্নতর পাওয়ার ক্রমে স্থাপন করুন।
a+b=-5 ab=4
সমীকরণটি সমাধান করতে, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) সূত্র ব্যবহার করে x^{2}-5x+4 গুণনীয়ক করুন। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,-4 -2,-2
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ঋণাত্মক, তাই a এবং b উভয়ই ঋণাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 4 প্রদান করে।
-1-4=-5 -2-2=-4
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-4 b=-1
সমাধানটি হল সেই জোড়া যা -5 যোগফল প্রদান করে।
\left(x-4\right)\left(x-1\right)
প্রাপ্ত মানগুলো ব্যবহার করে গুণনীয়ক করা অভিব্যক্তি \left(x+a\right)\left(x+b\right) পুনরায় লিখুন।
x=4 x=1
সমীকরণের সমাধানগুলো খুঁজতে, x-4=0 এবং x-1=0 সমাধান করুন।
25+x^{2}-21=5x
ভ্যারিয়েবল x 0-এর সমান হতে পারে না যেহেতু শূন্য দ্বারা ভাগ নির্ধারিত নয়। সমীকরণের উভয় দিককে 10x দিয়ে গুন করুন, 10x,2 এর লঘিষ্ট সাধারণ গুণিতক।
4+x^{2}=5x
4 পেতে 25 থেকে 21 বাদ দিন।
4+x^{2}-5x=0
উভয় দিক থেকে 5x বিয়োগ করুন।
x^{2}-5x+4=0
বহুপদটিকে স্ট্যান্ডার্ড ফর্মে দেখাতে পুনরায় সাজান। টার্ম উচ্চতর থেকে নিম্নতর পাওয়ার ক্রমে স্থাপন করুন।
a+b=-5 ab=1\times 4=4
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি x^{2}+ax+bx+4 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,-4 -2,-2
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ঋণাত্মক, তাই a এবং b উভয়ই ঋণাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 4 প্রদান করে।
-1-4=-5 -2-2=-4
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-4 b=-1
সমাধানটি হল সেই জোড়া যা -5 যোগফল প্রদান করে।
\left(x^{2}-4x\right)+\left(-x+4\right)
\left(x^{2}-4x\right)+\left(-x+4\right) হিসেবে x^{2}-5x+4 পুনরায় লিখুন৷
x\left(x-4\right)-\left(x-4\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে -1 ফ্যাক্টর আউট।
\left(x-4\right)\left(x-1\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-4 ফ্যাক্টর আউট করুন।
x=4 x=1
সমীকরণের সমাধানগুলো খুঁজতে, x-4=0 এবং x-1=0 সমাধান করুন।
25+x^{2}-21=5x
ভ্যারিয়েবল x 0-এর সমান হতে পারে না যেহেতু শূন্য দ্বারা ভাগ নির্ধারিত নয়। সমীকরণের উভয় দিককে 10x দিয়ে গুন করুন, 10x,2 এর লঘিষ্ট সাধারণ গুণিতক।
4+x^{2}=5x
4 পেতে 25 থেকে 21 বাদ দিন।
4+x^{2}-5x=0
উভয় দিক থেকে 5x বিয়োগ করুন।
x^{2}-5x+4=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 1, b এর জন্য -5 এবং c এর জন্য 4 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
-5 এর বর্গ
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
-4 কে 4 বার গুণ করুন।
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
-16 এ 25 যোগ করুন।
x=\frac{-\left(-5\right)±3}{2}
9 এর স্কোয়ার রুট নিন।
x=\frac{5±3}{2}
-5-এর বিপরীত হলো 5।
x=\frac{8}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{5±3}{2} যখন ± হল যোগ৷ 3 এ 5 যোগ করুন।
x=4
8 কে 2 দিয়ে ভাগ করুন।
x=\frac{2}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{5±3}{2} যখন ± হল বিয়োগ৷ 5 থেকে 3 বাদ দিন।
x=1
2 কে 2 দিয়ে ভাগ করুন।
x=4 x=1
সমীকরণটি এখন সমাধান করা হয়েছে।
25+x^{2}-21=5x
ভ্যারিয়েবল x 0-এর সমান হতে পারে না যেহেতু শূন্য দ্বারা ভাগ নির্ধারিত নয়। সমীকরণের উভয় দিককে 10x দিয়ে গুন করুন, 10x,2 এর লঘিষ্ট সাধারণ গুণিতক।
4+x^{2}=5x
4 পেতে 25 থেকে 21 বাদ দিন।
4+x^{2}-5x=0
উভয় দিক থেকে 5x বিয়োগ করুন।
x^{2}-5x=-4
উভয় দিক থেকে 4 বিয়োগ করুন। শূন্য থেকে কোনও সংখ্যাকে বিয়োগ করা যায় না৷
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} পেতে x টার্মের গুণাঙ্ক -5-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{5}{2}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{5}{2} এর বর্গ করুন।
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
\frac{25}{4} এ -4 যোগ করুন।
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
x^{2}-5x+\frac{25}{4} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
সিমপ্লিফাই।
x=4 x=1
সমীকরণের উভয় দিকে \frac{5}{2} যোগ করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}