মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+2-4=\left(x-2\right)\left(x+2\right)
ভ্যারিয়েবল x -2,2 মানগুলোর যেকোনওটির সমান হতে পারে না যেহেতু শূন্য দ্বারা ভাগ নির্ধারিত নয়। সমীকরণের উভয় দিককে \left(x-2\right)\left(x+2\right) দিয়ে গুন করুন, x-2,x^{2}-4 এর লঘিষ্ট সাধারণ গুণিতক।
x-2=\left(x-2\right)\left(x+2\right)
-2 পেতে 2 থেকে 4 বাদ দিন।
x-2=x^{2}-4
বিবেচনা করুন \left(x-2\right)\left(x+2\right)। নিয়মটি ব্যবহার করে গুণকে বর্গক্ষেত্রের ভিন্নতায় রূপান্তর করা যেতে পারে: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}৷ 2 এর বর্গ
x-2-x^{2}=-4
উভয় দিক থেকে x^{2} বিয়োগ করুন।
x-2-x^{2}+4=0
উভয় সাইডে 4 যোগ করুন৷
x+2-x^{2}=0
2 পেতে -2 এবং 4 যোগ করুন।
-x^{2}+x+2=0
বহুপদটিকে স্ট্যান্ডার্ড ফর্মে দেখাতে পুনরায় সাজান। টার্ম উচ্চতর থেকে নিম্নতর পাওয়ার ক্রমে স্থাপন করুন।
a+b=1 ab=-2=-2
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি -x^{2}+ax+bx+2 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
a=2 b=-1
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ধনাত্মক, তাই ঋণাত্মকটির তুলনায় ধনাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। কেবলমাত্র এই প্রকারের জোড়াটি হল সিস্টেম সমাধান।
\left(-x^{2}+2x\right)+\left(-x+2\right)
\left(-x^{2}+2x\right)+\left(-x+2\right) হিসেবে -x^{2}+x+2 পুনরায় লিখুন৷
-x\left(x-2\right)-\left(x-2\right)
প্রথম গোষ্ঠীতে -x এবং দ্বিতীয় গোষ্ঠীতে -1 ফ্যাক্টর আউট।
\left(x-2\right)\left(-x-1\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-2 ফ্যাক্টর আউট করুন।
x=2 x=-1
সমীকরণের সমাধানগুলো খুঁজতে, x-2=0 এবং -x-1=0 সমাধান করুন।
x=-1
ভ্যারিয়েবল x 2-এর সমান হতে পারে না৷
x+2-4=\left(x-2\right)\left(x+2\right)
ভ্যারিয়েবল x -2,2 মানগুলোর যেকোনওটির সমান হতে পারে না যেহেতু শূন্য দ্বারা ভাগ নির্ধারিত নয়। সমীকরণের উভয় দিককে \left(x-2\right)\left(x+2\right) দিয়ে গুন করুন, x-2,x^{2}-4 এর লঘিষ্ট সাধারণ গুণিতক।
x-2=\left(x-2\right)\left(x+2\right)
-2 পেতে 2 থেকে 4 বাদ দিন।
x-2=x^{2}-4
বিবেচনা করুন \left(x-2\right)\left(x+2\right)। নিয়মটি ব্যবহার করে গুণকে বর্গক্ষেত্রের ভিন্নতায় রূপান্তর করা যেতে পারে: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}৷ 2 এর বর্গ
x-2-x^{2}=-4
উভয় দিক থেকে x^{2} বিয়োগ করুন।
x-2-x^{2}+4=0
উভয় সাইডে 4 যোগ করুন৷
x+2-x^{2}=0
2 পেতে -2 এবং 4 যোগ করুন।
-x^{2}+x+2=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য -1, b এর জন্য 1 এবং c এর জন্য 2 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
1 এর বর্গ
x=\frac{-1±\sqrt{1+4\times 2}}{2\left(-1\right)}
-4 কে -1 বার গুণ করুন।
x=\frac{-1±\sqrt{1+8}}{2\left(-1\right)}
4 কে 2 বার গুণ করুন।
x=\frac{-1±\sqrt{9}}{2\left(-1\right)}
8 এ 1 যোগ করুন।
x=\frac{-1±3}{2\left(-1\right)}
9 এর স্কোয়ার রুট নিন।
x=\frac{-1±3}{-2}
2 কে -1 বার গুণ করুন।
x=\frac{2}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{-1±3}{-2} যখন ± হল যোগ৷ 3 এ -1 যোগ করুন।
x=-1
2 কে -2 দিয়ে ভাগ করুন।
x=-\frac{4}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{-1±3}{-2} যখন ± হল বিয়োগ৷ -1 থেকে 3 বাদ দিন।
x=2
-4 কে -2 দিয়ে ভাগ করুন।
x=-1 x=2
সমীকরণটি এখন সমাধান করা হয়েছে।
x=-1
ভ্যারিয়েবল x 2-এর সমান হতে পারে না৷
x+2-4=\left(x-2\right)\left(x+2\right)
ভ্যারিয়েবল x -2,2 মানগুলোর যেকোনওটির সমান হতে পারে না যেহেতু শূন্য দ্বারা ভাগ নির্ধারিত নয়। সমীকরণের উভয় দিককে \left(x-2\right)\left(x+2\right) দিয়ে গুন করুন, x-2,x^{2}-4 এর লঘিষ্ট সাধারণ গুণিতক।
x-2=\left(x-2\right)\left(x+2\right)
-2 পেতে 2 থেকে 4 বাদ দিন।
x-2=x^{2}-4
বিবেচনা করুন \left(x-2\right)\left(x+2\right)। নিয়মটি ব্যবহার করে গুণকে বর্গক্ষেত্রের ভিন্নতায় রূপান্তর করা যেতে পারে: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}৷ 2 এর বর্গ
x-2-x^{2}=-4
উভয় দিক থেকে x^{2} বিয়োগ করুন।
x-x^{2}=-4+2
উভয় সাইডে 2 যোগ করুন৷
x-x^{2}=-2
-2 পেতে -4 এবং 2 যোগ করুন।
-x^{2}+x=-2
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
\frac{-x^{2}+x}{-1}=-\frac{2}{-1}
-1 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\frac{1}{-1}x=-\frac{2}{-1}
-1 দিয়ে ভাগ করে -1 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-x=-\frac{2}{-1}
1 কে -1 দিয়ে ভাগ করুন।
x^{2}-x=2
-2 কে -1 দিয়ে ভাগ করুন।
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} পেতে x টার্মের গুণাঙ্ক -1-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{1}{2}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{1}{2} এর বর্গ করুন।
x^{2}-x+\frac{1}{4}=\frac{9}{4}
\frac{1}{4} এ 2 যোগ করুন।
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
x^{2}-x+\frac{1}{4} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
সিমপ্লিফাই।
x=2 x=-1
সমীকরণের উভয় দিকে \frac{1}{2} যোগ করুন।
x=-1
ভ্যারিয়েবল x 2-এর সমান হতে পারে না৷