মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
u এর জন্য সমাধান করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\left(y^{2}+z^{2}\right)\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{2}+z^{2}\right)^{2}
সমীকরণের উভয় দিককে y^{2}+z^{2} দিয়ে গুণ করুন।
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{2}+z^{2}\right)^{2}
y^{2}+z^{2} কে \frac{\mathrm{d}}{\mathrm{d}y}(u) দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(\left(y^{2}\right)^{2}+2y^{2}z^{2}+\left(z^{2}\right)^{2}\right)
\left(y^{2}+z^{2}\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যবহার করুন৷
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{4}+2y^{2}z^{2}+\left(z^{2}\right)^{2}\right)
কোনো সংখ্যার পাওয়ার অন্য পাওয়ারে বাড়াতে এক্সপোনেন্টগুলোকে গুণ করুন। 4 পেতে 2 এবং 2 গুণ করুন৷
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{4}+2y^{2}z^{2}+z^{4}\right)
কোনো সংখ্যার পাওয়ার অন্য পাওয়ারে বাড়াতে এক্সপোনেন্টগুলোকে গুণ করুন। 4 পেতে 2 এবং 2 গুণ করুন৷
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)y^{4}+2\left(-x\right)y^{2}z^{2}+\left(-x\right)z^{4}
-x কে y^{4}+2y^{2}z^{2}+z^{4} দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
\left(-x\right)y^{4}+2\left(-x\right)y^{2}z^{2}+\left(-x\right)z^{4}=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
-xy^{4}-2xy^{2}z^{2}-xz^{4}=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
-2 পেতে 2 এবং -1 গুণ করুন।
\left(-y^{4}-2y^{2}z^{2}-z^{4}\right)x=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
x আছে এমন সমস্ত টার্ম একত্রিত করুন।
\left(-y^{4}-2y^{2}z^{2}-z^{4}\right)x=0
সমীকরণটি এখন স্ট্যান্ডার্ড ফর্মে রয়েছে।
x=0
0 কে -y^{4}-2y^{2}z^{2}-z^{4} দিয়ে ভাগ করুন।