x এর জন্য সমাধান করুন
x=0
z\neq 0\text{ or }y\neq 0
u এর জন্য সমাধান করুন
u\in \mathrm{R}
\left(y\neq 0\text{ or }z\neq 0\right)\text{ and }x=0
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
\left(y^{2}+z^{2}\right)\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{2}+z^{2}\right)^{2}
সমীকরণের উভয় দিককে y^{2}+z^{2} দিয়ে গুণ করুন।
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{2}+z^{2}\right)^{2}
y^{2}+z^{2} কে \frac{\mathrm{d}}{\mathrm{d}y}(u) দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(\left(y^{2}\right)^{2}+2y^{2}z^{2}+\left(z^{2}\right)^{2}\right)
\left(y^{2}+z^{2}\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যবহার করুন৷
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{4}+2y^{2}z^{2}+\left(z^{2}\right)^{2}\right)
কোনো সংখ্যার পাওয়ার অন্য পাওয়ারে বাড়াতে এক্সপোনেন্টগুলোকে গুণ করুন। 4 পেতে 2 এবং 2 গুণ করুন৷
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{4}+2y^{2}z^{2}+z^{4}\right)
কোনো সংখ্যার পাওয়ার অন্য পাওয়ারে বাড়াতে এক্সপোনেন্টগুলোকে গুণ করুন। 4 পেতে 2 এবং 2 গুণ করুন৷
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)y^{4}+2\left(-x\right)y^{2}z^{2}+\left(-x\right)z^{4}
-x কে y^{4}+2y^{2}z^{2}+z^{4} দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
\left(-x\right)y^{4}+2\left(-x\right)y^{2}z^{2}+\left(-x\right)z^{4}=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
-xy^{4}-2xy^{2}z^{2}-xz^{4}=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
-2 পেতে 2 এবং -1 গুণ করুন।
\left(-y^{4}-2y^{2}z^{2}-z^{4}\right)x=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
x আছে এমন সমস্ত টার্ম একত্রিত করুন।
\left(-y^{4}-2y^{2}z^{2}-z^{4}\right)x=0
সমীকরণটি এখন স্ট্যান্ডার্ড ফর্মে রয়েছে।
x=0
0 কে -y^{4}-2y^{2}z^{2}-z^{4} দিয়ে ভাগ করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}