মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

a+b=-1 ab=-2=-2
গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি -x^{2}+ax+bx+2 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
a=1 b=-2
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। কেবলমাত্র এই প্রকারের জোড়াটি হল সিস্টেম সমাধান।
\left(-x^{2}+x\right)+\left(-2x+2\right)
\left(-x^{2}+x\right)+\left(-2x+2\right) হিসেবে -x^{2}-x+2 পুনরায় লিখুন৷
x\left(-x+1\right)+2\left(-x+1\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 2 ফ্যাক্টর আউট।
\left(-x+1\right)\left(x+2\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম -x+1 ফ্যাক্টর আউট করুন।
-x^{2}-x+2=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-1\right)±\sqrt{1+4\times 2}}{2\left(-1\right)}
-4 কে -1 বার গুণ করুন।
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-1\right)}
4 কে 2 বার গুণ করুন।
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-1\right)}
8 এ 1 যোগ করুন।
x=\frac{-\left(-1\right)±3}{2\left(-1\right)}
9 এর স্কোয়ার রুট নিন।
x=\frac{1±3}{2\left(-1\right)}
-1-এর বিপরীত হলো 1।
x=\frac{1±3}{-2}
2 কে -1 বার গুণ করুন।
x=\frac{4}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{1±3}{-2} যখন ± হল যোগ৷ 3 এ 1 যোগ করুন।
x=-2
4 কে -2 দিয়ে ভাগ করুন।
x=-\frac{2}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{1±3}{-2} যখন ± হল বিয়োগ৷ 1 থেকে 3 বাদ দিন।
x=1
-2 কে -2 দিয়ে ভাগ করুন।
-x^{2}-x+2=-\left(x-\left(-2\right)\right)\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প -2 ও x_{2} এর ক্ষেত্রে বিকল্প 1
-x^{2}-x+2=-\left(x+2\right)\left(x-1\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷