Əsas məzmuna keç
Microsoft
|
Math Solver
Həll
Məşq
Çal
Mövzular
Əvvəlki-Algebra
Mə'nalı
Rejim
Ən böyük ümumi amil
Ən Az Adi Çox
Əməliyyat sifarişi
Fraksiyalar
Qarışıq Fraksiyalar
Əsas Faktorizasiya
Eksponentlər
Radikallar
Algebra
Terminlər kimi birləşin
Dəyişən üçün həll edin
Faktor
Genişlə
Fraksiyaları qiymətləndirin
Xətti tənliklər
Kvadratik tənliklər
Bərabərsizliklər
Tənliklər sistemləri
Matrislər
Triqonometriya
Sadələşdir
Qiymətləndirmə
Qrafiklər
Tənlikləri həll et
Kalkül
Derivativlər
İnteqrallar
Limitlər
Algebra Girişləri
Triqonometriya Girişləri
Kalkul Girişi
Girişlər
Həll
Məşq
Çal
Mövzular
Əvvəlki-Algebra
Mə'nalı
Rejim
Ən böyük ümumi amil
Ən Az Adi Çox
Əməliyyat sifarişi
Fraksiyalar
Qarışıq Fraksiyalar
Əsas Faktorizasiya
Eksponentlər
Radikallar
Algebra
Terminlər kimi birləşin
Dəyişən üçün həll edin
Faktor
Genişlə
Fraksiyaları qiymətləndirin
Xətti tənliklər
Kvadratik tənliklər
Bərabərsizliklər
Tənliklər sistemləri
Matrislər
Triqonometriya
Sadələşdir
Qiymətləndirmə
Qrafiklər
Tənlikləri həll et
Kalkül
Derivativlər
İnteqrallar
Limitlər
Algebra Girişləri
Triqonometriya Girişləri
Kalkul Girişi
Girişlər
Əsas
algebra
triqonometriya
kalkülus
statistika
matrislər
Personajlar
Qiymətləndir
\text{Divergent}
Sorğu
Limits
5 oxşar problemlər:
\lim_{ x \rightarrow 0 } \frac{2}{x}
Veb Axtarışdan Oxşar Problemlər
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
Daha çox Əşyalar
Paylaş
Köçür
Panoya köçürüldü
Oxşar Problemlər
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Yenidən yuxarıya doğru