মূল্যায়ন
\left(\begin{matrix}1&3&21\\6&4&35\end{matrix}\right)
মেট্ৰিক্স ট্ৰান্সপ'জ কৰক
\left(\begin{matrix}1&6\\3&4\\21&35\end{matrix}\right)
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}2&0&3\\-1&1&5\end{matrix}\right)
মেট্ৰিক্স মাল্টিফিকেশ্বনক সংজ্ঞাকৰণ কৰা হয়, যদি প্ৰথম মেট্ৰিক্সৰ স্তম্ভৰ সংখ্যা দ্বিতীয় মেট্ৰিক্সৰ শাৰীৰ সংখ্যাৰ সৈতে সমান হয়৷
\left(\begin{matrix}2\times 2+3\left(-1\right)&&\\&&\end{matrix}\right)
প্ৰথম মেট্ৰিক্সৰ প্ৰথমটো শাৰীৰ প্ৰতিটো উপাদানক দ্বিতীয় মেট্ৰিক্সৰ প্ৰথম স্তম্ভৰ অনুৰূপ উপাদানৰ দ্বাৰা পুৰণ কৰক আৰু ইয়াৰ পিছত গুণফল মেট্ৰিক্সৰ প্ৰথম শাৰী, প্ৰথম স্তম্ভত উপাদান লাভ কৰিবলৈ এই গুণফলসমূহ যোগ কৰক৷
\left(\begin{matrix}2\times 2+3\left(-1\right)&3&2\times 3+3\times 5\\5\times 2+4\left(-1\right)&4&5\times 3+4\times 5\end{matrix}\right)
গুণফল মেট্ৰিক্সৰ বাকী থকা উপাদানসমূহ একেটা উপায়েৰে লাভ কৰা হ'ব৷
\left(\begin{matrix}4-3&3&6+15\\10-4&4&15+20\end{matrix}\right)
একক পদসমূহ পুৰণ কৰি প্ৰতিটো উপাদান সৰলীকৃত কৰক৷
\left(\begin{matrix}1&3&21\\6&4&35\end{matrix}\right)
মেট্ৰিক্সৰ প্ৰতিটো উপাদান যোগ কৰক৷
অনুৰূপ সমস্যা
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right]
6 \times \left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] + \left[ \begin{array} { l l l } { 2 } & { 0 } \\ { -1 } & { 1 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] - \left[ \begin{array} { l l l } { 0 } & { 3 } \\ { 1 } & { 5 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \times \left[ \begin{array} { l l l } { 0 } & { 3 } \\ { 1 } & { 5 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] ^ 2