求解 x 的值
x=\frac{6y}{13}-\frac{\sqrt{2}}{91}+\frac{4}{91}
求解 y 的值
y=\frac{91x+\sqrt{2}-4}{42}
图表
共享
已复制到剪贴板
91x+\sqrt{2}=4+42y
将 42y 添加到两侧。
91x=4+42y-\sqrt{2}
将方程式两边同时减去 \sqrt{2}。
91x=42y+4-\sqrt{2}
该公式采用标准形式。
\frac{91x}{91}=\frac{42y+4-\sqrt{2}}{91}
两边同时除以 91。
x=\frac{42y+4-\sqrt{2}}{91}
除以 91 是乘以 91 的逆运算。
x=\frac{6y}{13}-\frac{\sqrt{2}}{91}+\frac{4}{91}
4+42y-\sqrt{2} 除以 91。
-42y+\sqrt{2}=4-91x
将方程式两边同时减去 91x。
-42y=4-91x-\sqrt{2}
将方程式两边同时减去 \sqrt{2}。
-42y=-91x+4-\sqrt{2}
该公式采用标准形式。
\frac{-42y}{-42}=\frac{-91x+4-\sqrt{2}}{-42}
两边同时除以 -42。
y=\frac{-91x+4-\sqrt{2}}{-42}
除以 -42 是乘以 -42 的逆运算。
y=\frac{13x}{6}+\frac{\sqrt{2}}{42}-\frac{2}{21}
4-91x-\sqrt{2} 除以 -42。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}