求解 x 的值
x=6
x=2
图表
共享
已复制到剪贴板
7+x^{2}-8x+16=11
使用二项式定理 \left(a-b\right)^{2}=a^{2}-2ab+b^{2} 展开 \left(x-4\right)^{2}。
23+x^{2}-8x=11
7 与 16 相加,得到 23。
23+x^{2}-8x-11=0
将方程式两边同时减去 11。
12+x^{2}-8x=0
将 23 减去 11,得到 12。
x^{2}-8x+12=0
重新排列多项式,将其变为标准形式。按从最高次幂到最低次幂的顺序放置项。
a+b=-8 ab=12
若要解公式,请使用公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) x^{2}-8x+12 因子。 若要查找 a 和 b,请设置要解决的系统。
-1,-12 -2,-6 -3,-4
由于 ab 是正数,a 并且 b 具有相同的符号。 因为 a+b 是负值,所以 a 和 b 均为负。 列出提供产品 12 的所有此类整数对。
-1-12=-13 -2-6=-8 -3-4=-7
计算每对之和。
a=-6 b=-2
该解答是总和为 -8 的对。
\left(x-6\right)\left(x-2\right)
使用获取的值 \left(x+a\right)\left(x+b\right) 重写因式分解表达式。
x=6 x=2
若要找到方程解,请解 x-6=0 和 x-2=0.
7+x^{2}-8x+16=11
使用二项式定理 \left(a-b\right)^{2}=a^{2}-2ab+b^{2} 展开 \left(x-4\right)^{2}。
23+x^{2}-8x=11
7 与 16 相加,得到 23。
23+x^{2}-8x-11=0
将方程式两边同时减去 11。
12+x^{2}-8x=0
将 23 减去 11,得到 12。
x^{2}-8x+12=0
重新排列多项式,将其变为标准形式。按从最高次幂到最低次幂的顺序放置项。
a+b=-8 ab=1\times 12=12
要求解公式,请通过分组对左侧进行因式分解。首先,左侧需要重写成 x^{2}+ax+bx+12。 若要查找 a 和 b,请设置要解决的系统。
-1,-12 -2,-6 -3,-4
由于 ab 是正数,a 并且 b 具有相同的符号。 因为 a+b 是负值,所以 a 和 b 均为负。 列出提供产品 12 的所有此类整数对。
-1-12=-13 -2-6=-8 -3-4=-7
计算每对之和。
a=-6 b=-2
该解答是总和为 -8 的对。
\left(x^{2}-6x\right)+\left(-2x+12\right)
将 x^{2}-8x+12 改写为 \left(x^{2}-6x\right)+\left(-2x+12\right)。
x\left(x-6\right)-2\left(x-6\right)
将 x 放在第二个组中的第一个和 -2 中。
\left(x-6\right)\left(x-2\right)
通过使用分布式属性分解出共同项 x-6。
x=6 x=2
若要找到方程解,请解 x-6=0 和 x-2=0.
7+x^{2}-8x+16=11
使用二项式定理 \left(a-b\right)^{2}=a^{2}-2ab+b^{2} 展开 \left(x-4\right)^{2}。
23+x^{2}-8x=11
7 与 16 相加,得到 23。
23+x^{2}-8x-11=0
将方程式两边同时减去 11。
12+x^{2}-8x=0
将 23 减去 11,得到 12。
x^{2}-8x+12=0
形式为 ax^{2}+bx+c=0 的所有方程式均可求解,方法是使用二次公式来求解: \frac{-b±\sqrt{b^{2}-4ac}}{2a}。此二次公式可得到两个解,一个是当 ± 取加号时的解,另一个是取减号时的解。
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 12}}{2}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 1 替换 a,-8 替换 b,并用 12 替换 c。
x=\frac{-\left(-8\right)±\sqrt{64-4\times 12}}{2}
对 -8 进行平方运算。
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2}
求 -4 与 12 的乘积。
x=\frac{-\left(-8\right)±\sqrt{16}}{2}
将 -48 加上 64。
x=\frac{-\left(-8\right)±4}{2}
取 16 的平方根。
x=\frac{8±4}{2}
-8 的相反数是 8。
x=\frac{12}{2}
现在 ± 为加号时求公式 x=\frac{8±4}{2} 的解。 将 4 加上 8。
x=6
12 除以 2。
x=\frac{4}{2}
现在 ± 为减号时求公式 x=\frac{8±4}{2} 的解。 将 8 减去 4。
x=2
4 除以 2。
x=6 x=2
现已求得方程式的解。
7+x^{2}-8x+16=11
使用二项式定理 \left(a-b\right)^{2}=a^{2}-2ab+b^{2} 展开 \left(x-4\right)^{2}。
23+x^{2}-8x=11
7 与 16 相加,得到 23。
x^{2}-8x=11-23
将方程式两边同时减去 23。
x^{2}-8x=-12
将 11 减去 23,得到 -12。
x^{2}-8x+\left(-4\right)^{2}=-12+\left(-4\right)^{2}
将 x 项的系数 -8 除以 2 得 -4。然后在等式两边同时加上 -4 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}-8x+16=-12+16
对 -4 进行平方运算。
x^{2}-8x+16=4
将 16 加上 -12。
\left(x-4\right)^{2}=4
因数 x^{2}-8x+16。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-4\right)^{2}}=\sqrt{4}
对方程两边同时取平方根。
x-4=2 x-4=-2
化简。
x=6 x=2
在等式两边同时加 4。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}