因式分解
\left(3a-16\right)\left(a+2\right)
求值
\left(3a-16\right)\left(a+2\right)
共享
已复制到剪贴板
p+q=-10 pq=3\left(-32\right)=-96
通过分组对表达式进行因式分解。首先,表达式需要重写成 3a^{2}+pa+qa-32。 若要查找 p 和 q,请设置要解决的系统。
1,-96 2,-48 3,-32 4,-24 6,-16 8,-12
由于 pq 是负值,p 并且 q 具有相反的正负号。 p+q 为负,因此负数的绝对值比正数大。 列出提供产品 -96 的所有此类整数对。
1-96=-95 2-48=-46 3-32=-29 4-24=-20 6-16=-10 8-12=-4
计算每对之和。
p=-16 q=6
该解答是总和为 -10 的对。
\left(3a^{2}-16a\right)+\left(6a-32\right)
将 3a^{2}-10a-32 改写为 \left(3a^{2}-16a\right)+\left(6a-32\right)。
a\left(3a-16\right)+2\left(3a-16\right)
将 a 放在第二个组中的第一个和 2 中。
\left(3a-16\right)\left(a+2\right)
通过使用分布式属性分解出共同项 3a-16。
3a^{2}-10a-32=0
可使用变换式 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 对二次多项式进行因式分解,其中 x_{1} 和 x_{2} 是二次方程式 ax^{2}+bx+c=0 的解。
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\left(-32\right)}}{2\times 3}
形式为 ax^{2}+bx+c=0 的所有方程式均可求解,方法是使用二次公式来求解: \frac{-b±\sqrt{b^{2}-4ac}}{2a}。此二次公式可得到两个解,一个是当 ± 取加号时的解,另一个是取减号时的解。
a=\frac{-\left(-10\right)±\sqrt{100-4\times 3\left(-32\right)}}{2\times 3}
对 -10 进行平方运算。
a=\frac{-\left(-10\right)±\sqrt{100-12\left(-32\right)}}{2\times 3}
求 -4 与 3 的乘积。
a=\frac{-\left(-10\right)±\sqrt{100+384}}{2\times 3}
求 -12 与 -32 的乘积。
a=\frac{-\left(-10\right)±\sqrt{484}}{2\times 3}
将 384 加上 100。
a=\frac{-\left(-10\right)±22}{2\times 3}
取 484 的平方根。
a=\frac{10±22}{2\times 3}
-10 的相反数是 10。
a=\frac{10±22}{6}
求 2 与 3 的乘积。
a=\frac{32}{6}
现在 ± 为加号时求公式 a=\frac{10±22}{6} 的解。 将 22 加上 10。
a=\frac{16}{3}
通过求根和消去 2,将分数 \frac{32}{6} 降低为最简分数。
a=-\frac{12}{6}
现在 ± 为减号时求公式 a=\frac{10±22}{6} 的解。 将 10 减去 22。
a=-2
-12 除以 6。
3a^{2}-10a-32=3\left(a-\frac{16}{3}\right)\left(a-\left(-2\right)\right)
使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 对原始表达式进行因式分解。将 x_{1} 替换为 \frac{16}{3},将 x_{2} 替换为 -2。
3a^{2}-10a-32=3\left(a-\frac{16}{3}\right)\left(a+2\right)
将所有表达式的形式从 p-\left(-q\right) 简化为 p+q。
3a^{2}-10a-32=3\times \frac{3a-16}{3}\left(a+2\right)
将 a 减去 \frac{16}{3},运算方法是找到公分母,然后分子相减。如果可能,将所得分数化简为最简分数。
3a^{2}-10a-32=\left(3a-16\right)\left(a+2\right)
抵消 3 和 3 的最大公约数 3。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}