求解 x 的值
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=7
图表
共享
已复制到剪贴板
a+b=-9 ab=2\left(-35\right)=-70
要求解公式,请通过分组对左侧进行因式分解。首先,左侧需要重写成 2x^{2}+ax+bx-35。 若要查找 a 和 b,请设置要解决的系统。
1,-70 2,-35 5,-14 7,-10
由于 ab 是负值,a 并且 b 具有相反的正负号。 a+b 为负,因此负数的绝对值比正数大。 列出提供产品 -70 的所有此类整数对。
1-70=-69 2-35=-33 5-14=-9 7-10=-3
计算每对之和。
a=-14 b=5
该解答是总和为 -9 的对。
\left(2x^{2}-14x\right)+\left(5x-35\right)
将 2x^{2}-9x-35 改写为 \left(2x^{2}-14x\right)+\left(5x-35\right)。
2x\left(x-7\right)+5\left(x-7\right)
将 2x 放在第二个组中的第一个和 5 中。
\left(x-7\right)\left(2x+5\right)
通过使用分布式属性分解出共同项 x-7。
x=7 x=-\frac{5}{2}
若要找到方程解,请解 x-7=0 和 2x+5=0.
2x^{2}-9x-35=0
形式为 ax^{2}+bx+c=0 的所有方程式均可求解,方法是使用二次公式来求解: \frac{-b±\sqrt{b^{2}-4ac}}{2a}。此二次公式可得到两个解,一个是当 ± 取加号时的解,另一个是取减号时的解。
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\left(-35\right)}}{2\times 2}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 2 替换 a,-9 替换 b,并用 -35 替换 c。
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\left(-35\right)}}{2\times 2}
对 -9 进行平方运算。
x=\frac{-\left(-9\right)±\sqrt{81-8\left(-35\right)}}{2\times 2}
求 -4 与 2 的乘积。
x=\frac{-\left(-9\right)±\sqrt{81+280}}{2\times 2}
求 -8 与 -35 的乘积。
x=\frac{-\left(-9\right)±\sqrt{361}}{2\times 2}
将 280 加上 81。
x=\frac{-\left(-9\right)±19}{2\times 2}
取 361 的平方根。
x=\frac{9±19}{2\times 2}
-9 的相反数是 9。
x=\frac{9±19}{4}
求 2 与 2 的乘积。
x=\frac{28}{4}
现在 ± 为加号时求公式 x=\frac{9±19}{4} 的解。 将 19 加上 9。
x=7
28 除以 4。
x=-\frac{10}{4}
现在 ± 为减号时求公式 x=\frac{9±19}{4} 的解。 将 9 减去 19。
x=-\frac{5}{2}
通过求根和消去 2,将分数 \frac{-10}{4} 降低为最简分数。
x=7 x=-\frac{5}{2}
现已求得方程式的解。
2x^{2}-9x-35=0
这样的二次方程式可通过转换为完全平方形式来求解。要化为完全平方形式,等式必须先转换为 x^{2}+bx=c 的形式。
2x^{2}-9x-35-\left(-35\right)=-\left(-35\right)
在等式两边同时加 35。
2x^{2}-9x=-\left(-35\right)
-35 减去它自己得 0。
2x^{2}-9x=35
将 0 减去 -35。
\frac{2x^{2}-9x}{2}=\frac{35}{2}
两边同时除以 2。
x^{2}-\frac{9}{2}x=\frac{35}{2}
除以 2 是乘以 2 的逆运算。
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=\frac{35}{2}+\left(-\frac{9}{4}\right)^{2}
将 x 项的系数 -\frac{9}{2} 除以 2 得 -\frac{9}{4}。然后在等式两边同时加上 -\frac{9}{4} 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{35}{2}+\frac{81}{16}
对 -\frac{9}{4} 进行平方运算,方法是同时对该分数的分子和分母进行平方运算。
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{361}{16}
将 \frac{81}{16} 加上 \frac{35}{2},计算方法是寻找公分母,加上各自的分子。然后将所得分数进行约分化为最简分数。
\left(x-\frac{9}{4}\right)^{2}=\frac{361}{16}
因数 x^{2}-\frac{9}{2}x+\frac{81}{16}。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{361}{16}}
对方程两边同时取平方根。
x-\frac{9}{4}=\frac{19}{4} x-\frac{9}{4}=-\frac{19}{4}
化简。
x=7 x=-\frac{5}{2}
在等式两边同时加 \frac{9}{4}。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}