求解 x 的值 (复数求解)
x=\frac{-5+\sqrt{3}i}{2}\approx -2.5+0.866025404i
x=\frac{-\sqrt{3}i-5}{2}\approx -2.5-0.866025404i
图表
共享
已复制到剪贴板
x^{2}-5\left(-1\right)x+7=0
将 -1 与 5 相乘,得到 -5。
x^{2}+5x+7=0
将 -5 与 -1 相乘,得到 5。
x=\frac{-5±\sqrt{5^{2}-4\times 7}}{2}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 1 替换 a,5 替换 b,并用 7 替换 c。
x=\frac{-5±\sqrt{25-4\times 7}}{2}
对 5 进行平方运算。
x=\frac{-5±\sqrt{25-28}}{2}
求 -4 与 7 的乘积。
x=\frac{-5±\sqrt{-3}}{2}
将 -28 加上 25。
x=\frac{-5±\sqrt{3}i}{2}
取 -3 的平方根。
x=\frac{-5+\sqrt{3}i}{2}
现在 ± 为加号时求公式 x=\frac{-5±\sqrt{3}i}{2} 的解。 将 i\sqrt{3} 加上 -5。
x=\frac{-\sqrt{3}i-5}{2}
现在 ± 为减号时求公式 x=\frac{-5±\sqrt{3}i}{2} 的解。 将 -5 减去 i\sqrt{3}。
x=\frac{-5+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-5}{2}
现已求得方程式的解。
x^{2}-5\left(-x\right)=-7
将方程式两边同时减去 7。 零减去任何数都等于该数的相反数。
x^{2}-5\left(-1\right)x=-7
将 -1 与 5 相乘,得到 -5。
x^{2}+5x=-7
将 -5 与 -1 相乘,得到 5。
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-7+\left(\frac{5}{2}\right)^{2}
将 x 项的系数 5 除以 2 得 \frac{5}{2}。然后在等式两边同时加上 \frac{5}{2} 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}+5x+\frac{25}{4}=-7+\frac{25}{4}
对 \frac{5}{2} 进行平方运算,方法是同时对该分数的分子和分母进行平方运算。
x^{2}+5x+\frac{25}{4}=-\frac{3}{4}
将 \frac{25}{4} 加上 -7。
\left(x+\frac{5}{2}\right)^{2}=-\frac{3}{4}
因数 x^{2}+5x+\frac{25}{4}。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
对方程两边同时取平方根。
x+\frac{5}{2}=\frac{\sqrt{3}i}{2} x+\frac{5}{2}=-\frac{\sqrt{3}i}{2}
化简。
x=\frac{-5+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-5}{2}
将等式的两边同时减去 \frac{5}{2}。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}