求解 x, y, z 的值 (复数求解)
\left\{\begin{matrix}x=\frac{\sqrt{-2b\sqrt{16-b^{2}}+16}}{2}\text{, }y=\frac{\sqrt{16-b^{2}}+b}{2}\text{, }z=b\text{, }&a=b\text{ and }arg(\frac{-\sqrt{16-b^{2}}+b}{2})<\pi \\x=\frac{\sqrt{2b\sqrt{16-b^{2}}+16}}{2}\text{, }y=\frac{-\sqrt{16-b^{2}}+b}{2}\text{, }z=b\text{, }&\left(a=-2\sqrt{2}\text{ and }b=-2\sqrt{2}\right)\text{ or }\left(a=b\text{ and }arg(\frac{\sqrt{16-b^{2}}+b}{2})<\pi \right)\\x=-\frac{\sqrt{-2b\sqrt{16-b^{2}}+16}}{2}\text{, }y=\frac{\sqrt{16-b^{2}}+b}{2}\text{, }z=b\text{, }&a=b\text{ and }arg(\frac{\sqrt{16-b^{2}}-b}{2})<\pi \\x=-\frac{\sqrt{2b\sqrt{16-b^{2}}+16}}{2}\text{, }y=\frac{-\sqrt{16-b^{2}}+b}{2}\text{, }z=b\text{, }&\left(a=-2\sqrt{2}\text{ and }b=-2\sqrt{2}\right)\text{ or }\left(a=b\text{ and }arg(\frac{-\sqrt{16-b^{2}}-b}{2})<\pi \right)\\x=0\text{, }y=2\sqrt{2}\approx 2.828427125\text{, }z=2\sqrt{2}\approx 2.828427125\text{, }&a=2\sqrt{2}\text{ and }b=2\sqrt{2}\end{matrix}\right.
求解 x, y, z 的值
\left\{\begin{matrix}x=-\frac{\sqrt{2\left(-b\sqrt{16-b^{2}}+8\right)}}{2}\text{, }y=\frac{\sqrt{16-b^{2}}+b}{2}\text{, }z=b\text{, }&a=b\text{ and }b\leq 2\sqrt{2}\text{ and }|b|\leq 4\\x=-\frac{\sqrt{2\left(b\sqrt{16-b^{2}}+8\right)}}{2}\text{, }y=\frac{-\sqrt{16-b^{2}}+b}{2}\text{, }z=b\text{, }&a=b\text{ and }b\geq -4\text{ and }b\leq -2\sqrt{2}\\x=\frac{\sqrt{2\left(-b\sqrt{16-b^{2}}+8\right)}}{2}\text{, }y=\frac{\sqrt{16-b^{2}}+b}{2}\text{, }z=b\text{, }&a=b\text{ and }b\geq 2\sqrt{2}\text{ and }b\leq 4\\x=\frac{\sqrt{2\left(b\sqrt{16-b^{2}}+8\right)}}{2}\text{, }y=\frac{-\sqrt{16-b^{2}}+b}{2}\text{, }z=b\text{, }&a=b\text{ and }b\geq -2\sqrt{2}\text{ and }|b|\leq 4\end{matrix}\right.
共享
已复制到剪贴板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}