求解 x 的值
x\neq \sin(y)
\exists n_{1}\in \mathrm{Z}\text{ : }y=\pi n_{1}
求解 y 的值
y=\pi n_{3}
n_{3}\in \mathrm{Z}
\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(n_{1}>\frac{n_{3}}{2}-\frac{5}{4}\text{ and }n_{1}<\frac{n_{3}}{2}-\frac{3}{4}\right)\text{ or }\left(x<0\text{ and }x\geq -1\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(n_{1}\geq \frac{n_{3}}{2}-\frac{7}{4}\text{ and }n_{1}<\frac{n_{3}}{2}-\frac{3}{4}\right)\right)\text{ or }\left(x>0\text{ and }x\leq 1\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(n_{1}>\frac{n_{3}}{2}-\frac{5}{4}\text{ and }n_{1}\leq \frac{n_{3}}{2}-\frac{1}{4}\right)\right)\right)\text{ and }\left(\left(x\geq -1\text{ and }x<0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\left(n_{2}>\frac{n_{3}}{2}-\frac{3}{4}\text{ and }n_{2}\leq \frac{n_{3}}{2}+\frac{1}{4}\right)\right)\text{ or }\left(x>0\text{ and }x\leq 1\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\left(n_{2}\geq \frac{n_{3}}{2}-\frac{5}{4}\text{ and }n_{2}<\frac{n_{3}}{2}-\frac{1}{4}\right)\right)\text{ or }\left(\exists n_{2}\in \mathrm{Z}\text{ : }\left(n_{2}>\frac{n_{3}}{2}-\frac{3}{4}\text{ and }n_{2}<\frac{n_{3}}{2}-\frac{1}{4}\right)\text{ and }|x|\leq 1\right)\right)
x\geq -1\text{ and }x\leq 1
共享
已复制到剪贴板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}