\frac { d x ^ { 2 } } { d t ^ { 2 } } + \frac { 12 d x } { d t } + 13 x = 2 \frac { d x } { d t }
求解 d 的值
d\neq 0
t=-\frac{12}{13}\text{ or }\left(x=0\text{ and }t\neq 0\right)
求解 t 的值
\left\{\begin{matrix}t=-\frac{12}{13}\text{, }&x\neq 0\text{ and }d\neq 0\\t\neq 0\text{, }&x=0\text{ and }d\neq 0\end{matrix}\right.
共享
已复制到剪贴板
dt\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}+12dx+13xdt=2\frac{\mathrm{d}(x)}{\mathrm{d}t}dt
由于无法定义除以零,因此变量 d 不能等于 0。 将方程式的两边同时乘以 dt。
dt\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}+12dx+13xdt-2\frac{\mathrm{d}(x)}{\mathrm{d}t}dt=0
将方程式两边同时减去 2\frac{\mathrm{d}(x)}{\mathrm{d}t}dt。
\left(t\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}+12x+13xt-2\frac{\mathrm{d}(x)}{\mathrm{d}t}t\right)d=0
合并所有含 d 的项。
\left(13tx+12x\right)d=0
该公式采用标准形式。
d=0
0 除以 12x+13xt。
d\in \emptyset
变量 d 不能等于 0。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}