跳到主要内容
求值
Tick mark Image

来自 Web 搜索的类似问题

共享

\frac{\sqrt{2}\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}
通过将分子和分母乘以 4+\sqrt{3},使 \frac{\sqrt{2}}{4-\sqrt{3}} 的分母有理化
\frac{\sqrt{2}\left(4+\sqrt{3}\right)}{4^{2}-\left(\sqrt{3}\right)^{2}}
请考虑 \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)。 使用以下规则可将乘法转换为平方差: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}。
\frac{\sqrt{2}\left(4+\sqrt{3}\right)}{16-3}
对 4 进行平方运算。 对 \sqrt{3} 进行平方运算。
\frac{\sqrt{2}\left(4+\sqrt{3}\right)}{13}
将 16 减去 3,得到 13。
\frac{4\sqrt{2}+\sqrt{2}\sqrt{3}}{13}
使用分配律将 \sqrt{2} 乘以 4+\sqrt{3}。
\frac{4\sqrt{2}+\sqrt{6}}{13}
若要将 \sqrt{2} 和 \sqrt{3} 相乘,请将数字从平方根下相乘。