跳到主要內容
Math Solver will be retired on July 7, 2025. Solve math equations with Math Assistant in OneNote to help you reach solutions quickly.
因式分解
Tick mark Image
評估
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

a+b=-6 ab=1\left(-160\right)=-160
分組對運算式進行因數分解。首先,運算式必須重寫為 x^{2}+ax+bx-160。 若要取得 a 和 b,請預設求解的方程式。
1,-160 2,-80 4,-40 5,-32 8,-20 10,-16
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為負數,負數具有比正數更大的絕對值。 列出乘積為 -160 的所有此類整數組合。
1-160=-159 2-80=-78 4-40=-36 5-32=-27 8-20=-12 10-16=-6
計算每個組合的總和。
a=-16 b=10
該解的總和為 -6。
\left(x^{2}-16x\right)+\left(10x-160\right)
將 x^{2}-6x-160 重寫為 \left(x^{2}-16x\right)+\left(10x-160\right)。
x\left(x-16\right)+10\left(x-16\right)
在第一個組因式分解是 x,且第二個組是 10。
\left(x-16\right)\left(x+10\right)
使用分配律來因式分解常用項 x-16。
x^{2}-6x-160=0
可以使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 這個轉換方式來因數分解二次多項式,其中 x_{1} 與 x_{2} 是二次方程式 ax^{2}+bx+c=0 的解。
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-160\right)}}{2}
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-160\right)}}{2}
對 -6 平方。
x=\frac{-\left(-6\right)±\sqrt{36+640}}{2}
-4 乘上 -160。
x=\frac{-\left(-6\right)±\sqrt{676}}{2}
將 36 加到 640。
x=\frac{-\left(-6\right)±26}{2}
取 676 的平方根。
x=\frac{6±26}{2}
-6 的相反數是 6。
x=\frac{32}{2}
現在解出 ± 為正號時的方程式 x=\frac{6±26}{2}。 將 6 加到 26。
x=16
32 除以 2。
x=-\frac{20}{2}
現在解出 ± 為負號時的方程式 x=\frac{6±26}{2}。 從 6 減去 26。
x=-10
-20 除以 2。
x^{2}-6x-160=\left(x-16\right)\left(x-\left(-10\right)\right)
使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 來因數分解原始的運算式。將 16 代入 x_{1} 並將 -10 代入 x_{2}。
x^{2}-6x-160=\left(x-16\right)\left(x+10\right)
將 p-\left(-q\right) 形式的所有運算式化簡為 p+q。