跳到主要內容
解 x
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

a+b=-9 ab=-10
若要解出方程式,請使用公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) x^{2}-9x-10。 若要取得 a 和 b,請預設求解的方程式。
1,-10 2,-5
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為負數,負數具有比正數更大的絕對值。 列出乘積為 -10 的所有此類整數組合。
1-10=-9 2-5=-3
計算每個組合的總和。
a=-10 b=1
該解的總和為 -9。
\left(x-10\right)\left(x+1\right)
使用取得的值,重寫因數分解過後的運算式 \left(x+a\right)\left(x+b\right)。
x=10 x=-1
若要尋找方程式方案,請求解 x-10=0 並 x+1=0。
a+b=-9 ab=1\left(-10\right)=-10
若要解出方程式,請對左邊進行分組因數分解。首先,左邊必須重寫為 x^{2}+ax+bx-10。 若要取得 a 和 b,請預設求解的方程式。
1,-10 2,-5
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為負數,負數具有比正數更大的絕對值。 列出乘積為 -10 的所有此類整數組合。
1-10=-9 2-5=-3
計算每個組合的總和。
a=-10 b=1
該解的總和為 -9。
\left(x^{2}-10x\right)+\left(x-10\right)
將 x^{2}-9x-10 重寫為 \left(x^{2}-10x\right)+\left(x-10\right)。
x\left(x-10\right)+x-10
因式分解 x^{2}-10x 中的 x。
\left(x-10\right)\left(x+1\right)
使用分配律來因式分解常用項 x-10。
x=10 x=-1
若要尋找方程式方案,請求解 x-10=0 並 x+1=0。
x^{2}-9x-10=0
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-10\right)}}{2}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 1 代入 a,將 -9 代入 b,以及將 -10 代入 c。
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-10\right)}}{2}
對 -9 平方。
x=\frac{-\left(-9\right)±\sqrt{81+40}}{2}
-4 乘上 -10。
x=\frac{-\left(-9\right)±\sqrt{121}}{2}
將 81 加到 40。
x=\frac{-\left(-9\right)±11}{2}
取 121 的平方根。
x=\frac{9±11}{2}
-9 的相反數是 9。
x=\frac{20}{2}
現在解出 ± 為正號時的方程式 x=\frac{9±11}{2}。 將 9 加到 11。
x=10
20 除以 2。
x=-\frac{2}{2}
現在解出 ± 為負號時的方程式 x=\frac{9±11}{2}。 從 9 減去 11。
x=-1
-2 除以 2。
x=10 x=-1
現已成功解出方程式。
x^{2}-9x-10=0
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
x^{2}-9x-10-\left(-10\right)=-\left(-10\right)
將 10 加到方程式的兩邊。
x^{2}-9x=-\left(-10\right)
從 -10 減去本身會剩下 0。
x^{2}-9x=10
從 0 減去 -10。
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=10+\left(-\frac{9}{2}\right)^{2}
將 -9 (x 項的係數) 除以 2 可得到 -\frac{9}{2}。接著,將 -\frac{9}{2} 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}-9x+\frac{81}{4}=10+\frac{81}{4}
-\frac{9}{2} 的平方是將分式的分子和分母兩個都平方。
x^{2}-9x+\frac{81}{4}=\frac{121}{4}
將 10 加到 \frac{81}{4}。
\left(x-\frac{9}{2}\right)^{2}=\frac{121}{4}
因數分解 x^{2}-9x+\frac{81}{4}。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
取方程式兩邊的平方根。
x-\frac{9}{2}=\frac{11}{2} x-\frac{9}{2}=-\frac{11}{2}
化簡。
x=10 x=-1
將 \frac{9}{2} 加到方程式的兩邊。