跳到主要內容
解 x
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

a+b=6 ab=-16
若要解出方程式,請使用公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) x^{2}+6x-16。 若要取得 a 和 b,請預設求解的方程式。
-1,16 -2,8 -4,4
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為正數,正數具有比負數更大的絕對值。 列出乘積為 -16 的所有此類整數組合。
-1+16=15 -2+8=6 -4+4=0
計算每個組合的總和。
a=-2 b=8
該解的總和為 6。
\left(x-2\right)\left(x+8\right)
使用取得的值,重寫因數分解過後的運算式 \left(x+a\right)\left(x+b\right)。
x=2 x=-8
若要尋找方程式方案,請求解 x-2=0 並 x+8=0。
a+b=6 ab=1\left(-16\right)=-16
若要解出方程式,請對左邊進行分組因數分解。首先,左邊必須重寫為 x^{2}+ax+bx-16。 若要取得 a 和 b,請預設求解的方程式。
-1,16 -2,8 -4,4
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為正數,正數具有比負數更大的絕對值。 列出乘積為 -16 的所有此類整數組合。
-1+16=15 -2+8=6 -4+4=0
計算每個組合的總和。
a=-2 b=8
該解的總和為 6。
\left(x^{2}-2x\right)+\left(8x-16\right)
將 x^{2}+6x-16 重寫為 \left(x^{2}-2x\right)+\left(8x-16\right)。
x\left(x-2\right)+8\left(x-2\right)
在第一個組因式分解是 x,且第二個組是 8。
\left(x-2\right)\left(x+8\right)
使用分配律來因式分解常用項 x-2。
x=2 x=-8
若要尋找方程式方案,請求解 x-2=0 並 x+8=0。
x^{2}+6x-16=0
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-6±\sqrt{6^{2}-4\left(-16\right)}}{2}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 1 代入 a,將 6 代入 b,以及將 -16 代入 c。
x=\frac{-6±\sqrt{36-4\left(-16\right)}}{2}
對 6 平方。
x=\frac{-6±\sqrt{36+64}}{2}
-4 乘上 -16。
x=\frac{-6±\sqrt{100}}{2}
將 36 加到 64。
x=\frac{-6±10}{2}
取 100 的平方根。
x=\frac{4}{2}
現在解出 ± 為正號時的方程式 x=\frac{-6±10}{2}。 將 -6 加到 10。
x=2
4 除以 2。
x=-\frac{16}{2}
現在解出 ± 為負號時的方程式 x=\frac{-6±10}{2}。 從 -6 減去 10。
x=-8
-16 除以 2。
x=2 x=-8
現已成功解出方程式。
x^{2}+6x-16=0
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
x^{2}+6x-16-\left(-16\right)=-\left(-16\right)
將 16 加到方程式的兩邊。
x^{2}+6x=-\left(-16\right)
從 -16 減去本身會剩下 0。
x^{2}+6x=16
從 0 減去 -16。
x^{2}+6x+3^{2}=16+3^{2}
將 6 (x 項的係數) 除以 2 可得到 3。接著,將 3 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}+6x+9=16+9
對 3 平方。
x^{2}+6x+9=25
將 16 加到 9。
\left(x+3\right)^{2}=25
因數分解 x^{2}+6x+9。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x+3\right)^{2}}=\sqrt{25}
取方程式兩邊的平方根。
x+3=5 x+3=-5
化簡。
x=2 x=-8
從方程式兩邊減去 3。