跳到主要內容
解 x
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

a+b=3 ab=-88
若要解出方程式,請使用公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) x^{2}+3x-88。 若要取得 a 和 b,請預設求解的方程式。
-1,88 -2,44 -4,22 -8,11
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為正數,正數具有比負數更大的絕對值。 列出乘積為 -88 的所有此類整數組合。
-1+88=87 -2+44=42 -4+22=18 -8+11=3
計算每個組合的總和。
a=-8 b=11
該解的總和為 3。
\left(x-8\right)\left(x+11\right)
使用取得的值,重寫因數分解過後的運算式 \left(x+a\right)\left(x+b\right)。
x=8 x=-11
若要尋找方程式方案,請求解 x-8=0 並 x+11=0。
a+b=3 ab=1\left(-88\right)=-88
若要解出方程式,請對左邊進行分組因數分解。首先,左邊必須重寫為 x^{2}+ax+bx-88。 若要取得 a 和 b,請預設求解的方程式。
-1,88 -2,44 -4,22 -8,11
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為正數,正數具有比負數更大的絕對值。 列出乘積為 -88 的所有此類整數組合。
-1+88=87 -2+44=42 -4+22=18 -8+11=3
計算每個組合的總和。
a=-8 b=11
該解的總和為 3。
\left(x^{2}-8x\right)+\left(11x-88\right)
將 x^{2}+3x-88 重寫為 \left(x^{2}-8x\right)+\left(11x-88\right)。
x\left(x-8\right)+11\left(x-8\right)
在第一個組因式分解是 x,且第二個組是 11。
\left(x-8\right)\left(x+11\right)
使用分配律來因式分解常用項 x-8。
x=8 x=-11
若要尋找方程式方案,請求解 x-8=0 並 x+11=0。
x^{2}+3x-88=0
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-3±\sqrt{3^{2}-4\left(-88\right)}}{2}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 1 代入 a,將 3 代入 b,以及將 -88 代入 c。
x=\frac{-3±\sqrt{9-4\left(-88\right)}}{2}
對 3 平方。
x=\frac{-3±\sqrt{9+352}}{2}
-4 乘上 -88。
x=\frac{-3±\sqrt{361}}{2}
將 9 加到 352。
x=\frac{-3±19}{2}
取 361 的平方根。
x=\frac{16}{2}
現在解出 ± 為正號時的方程式 x=\frac{-3±19}{2}。 將 -3 加到 19。
x=8
16 除以 2。
x=-\frac{22}{2}
現在解出 ± 為負號時的方程式 x=\frac{-3±19}{2}。 從 -3 減去 19。
x=-11
-22 除以 2。
x=8 x=-11
現已成功解出方程式。
x^{2}+3x-88=0
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
x^{2}+3x-88-\left(-88\right)=-\left(-88\right)
將 88 加到方程式的兩邊。
x^{2}+3x=-\left(-88\right)
從 -88 減去本身會剩下 0。
x^{2}+3x=88
從 0 減去 -88。
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=88+\left(\frac{3}{2}\right)^{2}
將 3 (x 項的係數) 除以 2 可得到 \frac{3}{2}。接著,將 \frac{3}{2} 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}+3x+\frac{9}{4}=88+\frac{9}{4}
\frac{3}{2} 的平方是將分式的分子和分母兩個都平方。
x^{2}+3x+\frac{9}{4}=\frac{361}{4}
將 88 加到 \frac{9}{4}。
\left(x+\frac{3}{2}\right)^{2}=\frac{361}{4}
因數分解 x^{2}+3x+\frac{9}{4}。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
取方程式兩邊的平方根。
x+\frac{3}{2}=\frac{19}{2} x+\frac{3}{2}=-\frac{19}{2}
化簡。
x=8 x=-11
從方程式兩邊減去 \frac{3}{2}。