跳到主要內容
解 x (復數求解)
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

5x^{2}-8x+5=0
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 5\times 5}}{2\times 5}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 5 代入 a,將 -8 代入 b,以及將 5 代入 c。
x=\frac{-\left(-8\right)±\sqrt{64-4\times 5\times 5}}{2\times 5}
對 -8 平方。
x=\frac{-\left(-8\right)±\sqrt{64-20\times 5}}{2\times 5}
-4 乘上 5。
x=\frac{-\left(-8\right)±\sqrt{64-100}}{2\times 5}
-20 乘上 5。
x=\frac{-\left(-8\right)±\sqrt{-36}}{2\times 5}
將 64 加到 -100。
x=\frac{-\left(-8\right)±6i}{2\times 5}
取 -36 的平方根。
x=\frac{8±6i}{2\times 5}
-8 的相反數是 8。
x=\frac{8±6i}{10}
2 乘上 5。
x=\frac{8+6i}{10}
現在解出 ± 為正號時的方程式 x=\frac{8±6i}{10}。 將 8 加到 6i。
x=\frac{4}{5}+\frac{3}{5}i
8+6i 除以 10。
x=\frac{8-6i}{10}
現在解出 ± 為負號時的方程式 x=\frac{8±6i}{10}。 從 8 減去 6i。
x=\frac{4}{5}-\frac{3}{5}i
8-6i 除以 10。
x=\frac{4}{5}+\frac{3}{5}i x=\frac{4}{5}-\frac{3}{5}i
現已成功解出方程式。
5x^{2}-8x+5=0
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
5x^{2}-8x+5-5=-5
從方程式兩邊減去 5。
5x^{2}-8x=-5
從 5 減去本身會剩下 0。
\frac{5x^{2}-8x}{5}=-\frac{5}{5}
將兩邊同時除以 5。
x^{2}-\frac{8}{5}x=-\frac{5}{5}
除以 5 可以取消乘以 5 造成的效果。
x^{2}-\frac{8}{5}x=-1
-5 除以 5。
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-1+\left(-\frac{4}{5}\right)^{2}
將 -\frac{8}{5} (x 項的係數) 除以 2 可得到 -\frac{4}{5}。接著,將 -\frac{4}{5} 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}-\frac{8}{5}x+\frac{16}{25}=-1+\frac{16}{25}
-\frac{4}{5} 的平方是將分式的分子和分母兩個都平方。
x^{2}-\frac{8}{5}x+\frac{16}{25}=-\frac{9}{25}
將 -1 加到 \frac{16}{25}。
\left(x-\frac{4}{5}\right)^{2}=-\frac{9}{25}
因數分解 x^{2}-\frac{8}{5}x+\frac{16}{25}。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{-\frac{9}{25}}
取方程式兩邊的平方根。
x-\frac{4}{5}=\frac{3}{5}i x-\frac{4}{5}=-\frac{3}{5}i
化簡。
x=\frac{4}{5}+\frac{3}{5}i x=\frac{4}{5}-\frac{3}{5}i
將 \frac{4}{5} 加到方程式的兩邊。