跳到主要內容
解 x
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

10x^{2}+x^{3}-6-3=0
從兩邊減去 3。
10x^{2}+x^{3}-9=0
從 -6 減去 3 會得到 -9。
x^{3}+10x^{2}-9=0
重新排列方程式,使其以標準式表示。由乘冪數最高的項目到乘冪數最低的項目依序排列。
±9,±3,±1
根據有理根定理,多項式的所有有理根其形式為 \frac{p}{q},其中 p 除以常數項 -9,而 q 除以前置係數 1。 列出所有的候選 \frac{p}{q}。
x=-1
從最小的絕對值開始,嘗試所有的整數值以找出此類的根。如果找不到整數根,請試試使用分數。
x^{2}+9x-9=0
根據因式定理,x-k 是每個根為 k 之多項式的因式。 將 x^{3}+10x^{2}-9 除以 x+1 以得到 x^{2}+9x-9。 當結果等於 0 時,即可解出方程式。
x=\frac{-9±\sqrt{9^{2}-4\times 1\left(-9\right)}}{2}
ax^{2}+bx+c=0 形式的所有方程式可以使用二次方公式解出: \frac{-b±\sqrt{b^{2}-4ac}}{2a}。在二次方公式中以 1 取代 a、以 9 取代 b 並以 -9 取 c。
x=\frac{-9±3\sqrt{13}}{2}
計算。
x=\frac{-3\sqrt{13}-9}{2} x=\frac{3\sqrt{13}-9}{2}
當 ± 為加號與 ± 為減號時解方程式 x^{2}+9x-9=0。
x=-1 x=\frac{-3\sqrt{13}-9}{2} x=\frac{3\sqrt{13}-9}{2}
列出所有找到的解決方案。