跳到主要內容
解 x (復數求解)
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

-7x^{2}+5x-4=0
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-5±\sqrt{5^{2}-4\left(-7\right)\left(-4\right)}}{2\left(-7\right)}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 -7 代入 a,將 5 代入 b,以及將 -4 代入 c。
x=\frac{-5±\sqrt{25-4\left(-7\right)\left(-4\right)}}{2\left(-7\right)}
對 5 平方。
x=\frac{-5±\sqrt{25+28\left(-4\right)}}{2\left(-7\right)}
-4 乘上 -7。
x=\frac{-5±\sqrt{25-112}}{2\left(-7\right)}
28 乘上 -4。
x=\frac{-5±\sqrt{-87}}{2\left(-7\right)}
將 25 加到 -112。
x=\frac{-5±\sqrt{87}i}{2\left(-7\right)}
取 -87 的平方根。
x=\frac{-5±\sqrt{87}i}{-14}
2 乘上 -7。
x=\frac{-5+\sqrt{87}i}{-14}
現在解出 ± 為正號時的方程式 x=\frac{-5±\sqrt{87}i}{-14}。 將 -5 加到 i\sqrt{87}。
x=\frac{-\sqrt{87}i+5}{14}
-5+i\sqrt{87} 除以 -14。
x=\frac{-\sqrt{87}i-5}{-14}
現在解出 ± 為負號時的方程式 x=\frac{-5±\sqrt{87}i}{-14}。 從 -5 減去 i\sqrt{87}。
x=\frac{5+\sqrt{87}i}{14}
-5-i\sqrt{87} 除以 -14。
x=\frac{-\sqrt{87}i+5}{14} x=\frac{5+\sqrt{87}i}{14}
現已成功解出方程式。
-7x^{2}+5x-4=0
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
-7x^{2}+5x-4-\left(-4\right)=-\left(-4\right)
將 4 加到方程式的兩邊。
-7x^{2}+5x=-\left(-4\right)
從 -4 減去本身會剩下 0。
-7x^{2}+5x=4
從 0 減去 -4。
\frac{-7x^{2}+5x}{-7}=\frac{4}{-7}
將兩邊同時除以 -7。
x^{2}+\frac{5}{-7}x=\frac{4}{-7}
除以 -7 可以取消乘以 -7 造成的效果。
x^{2}-\frac{5}{7}x=\frac{4}{-7}
5 除以 -7。
x^{2}-\frac{5}{7}x=-\frac{4}{7}
4 除以 -7。
x^{2}-\frac{5}{7}x+\left(-\frac{5}{14}\right)^{2}=-\frac{4}{7}+\left(-\frac{5}{14}\right)^{2}
將 -\frac{5}{7} (x 項的係數) 除以 2 可得到 -\frac{5}{14}。接著,將 -\frac{5}{14} 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}-\frac{5}{7}x+\frac{25}{196}=-\frac{4}{7}+\frac{25}{196}
-\frac{5}{14} 的平方是將分式的分子和分母兩個都平方。
x^{2}-\frac{5}{7}x+\frac{25}{196}=-\frac{87}{196}
將 -\frac{4}{7} 與 \frac{25}{196} 相加的算法: 先通分,接著相加分子,然後將分式化為最簡分式。
\left(x-\frac{5}{14}\right)^{2}=-\frac{87}{196}
因數分解 x^{2}-\frac{5}{7}x+\frac{25}{196}。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{5}{14}\right)^{2}}=\sqrt{-\frac{87}{196}}
取方程式兩邊的平方根。
x-\frac{5}{14}=\frac{\sqrt{87}i}{14} x-\frac{5}{14}=-\frac{\sqrt{87}i}{14}
化簡。
x=\frac{5+\sqrt{87}i}{14} x=\frac{-\sqrt{87}i+5}{14}
將 \frac{5}{14} 加到方程式的兩邊。