跳到主要內容
解 x、y
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

2x+y=3,5x+y=6
使用代換法來解一對方程式的方法: 首先解出其中一個方程式的一個變數。然後使用結果取代另一個方程式中的該變數。
2x+y=3
選擇其中一個方程式並使用下列方式解出 x: 將 x 單獨置於等號的左邊。
2x=-y+3
從方程式兩邊減去 y。
x=\frac{1}{2}\left(-y+3\right)
將兩邊同時除以 2。
x=-\frac{1}{2}y+\frac{3}{2}
\frac{1}{2} 乘上 -y+3。
5\left(-\frac{1}{2}y+\frac{3}{2}\right)+y=6
在另一個方程式 5x+y=6 中以 \frac{-y+3}{2} 代入 x在方程式。
-\frac{5}{2}y+\frac{15}{2}+y=6
5 乘上 \frac{-y+3}{2}。
-\frac{3}{2}y+\frac{15}{2}=6
將 -\frac{5y}{2} 加到 y。
-\frac{3}{2}y=-\frac{3}{2}
從方程式兩邊減去 \frac{15}{2}。
y=1
對方程式的兩邊同時除以 -\frac{3}{2},與兩邊同時乘上該分式的倒數一樣。
x=\frac{-1+3}{2}
在 x=-\frac{1}{2}y+\frac{3}{2} 中以 1 代入 y。因為產生的方程式包含只有一個變數,您可以直接解出 x。
x=1
將 \frac{3}{2} 與 -\frac{1}{2} 相加的算法: 先通分,接著相加分子,然後將分式化為最簡分式。
x=1,y=1
現已成功解出系統。
2x+y=3,5x+y=6
將方程式以標準式表示,然後使用矩陣來解方程組。
\left(\begin{matrix}2&1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
以矩陣形式撰寫方程式。
inverse(\left(\begin{matrix}2&1\\5&1\end{matrix}\right))\left(\begin{matrix}2&1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&1\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
方程式的兩邊在左方同時乘上 \left(\begin{matrix}2&1\\5&1\end{matrix}\right) 的反矩陣。
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&1\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
矩陣和反矩陣的乘積為單位矩陣。
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&1\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
乘以等號左邊的矩陣。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-5}&-\frac{1}{2-5}\\-\frac{5}{2-5}&\frac{2}{2-5}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
對 2\times 2 矩陣 \left(\begin{matrix}a&b\\c&d\end{matrix}\right),逆矩陣為 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right),所以矩陣方程式可以改寫為矩陣相乘的問題。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\\frac{5}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
計算。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 3+\frac{1}{3}\times 6\\\frac{5}{3}\times 3-\frac{2}{3}\times 6\end{matrix}\right)
矩陣相乘。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
計算。
x=1,y=1
解出矩陣元素 x 和 y。
2x+y=3,5x+y=6
為了使用消去法求解,兩個方程式中的其中一個變數其係數必須相同,這樣兩個方程式相減時才會消去該變數。
2x-5x+y-y=3-6
透過在等號兩邊減去同類項的方式,從 2x+y=3 減去 5x+y=6。
2x-5x=3-6
將 y 加到 -y。 y 和 -y 項相互消去,方程式就會只剩下一個變數,很容易就可以解出。
-3x=3-6
將 2x 加到 -5x。
-3x=-3
將 3 加到 -6。
x=1
將兩邊同時除以 -3。
5+y=6
在 5x+y=6 中以 1 代入 x。因為產生的方程式包含只有一個變數,您可以直接解出 y。
y=1
從方程式兩邊減去 5。
x=1,y=1
現已成功解出系統。