解 x
x=-1
x=12
圖表
共享
已復制到剪貼板
\left(x+6\right)\times 2+x\times 15=x\left(x+6\right)
變數 x 不能等於 -6,0 中的任何值,因為未定義除數為零。 對方程式兩邊同時乘上 x\left(x+6\right),這是 x,x+6 的最小公倍數。
2x+12+x\times 15=x\left(x+6\right)
計算 x+6 乘上 2 時使用乘法分配律。
17x+12=x\left(x+6\right)
合併 2x 和 x\times 15 以取得 17x。
17x+12=x^{2}+6x
計算 x 乘上 x+6 時使用乘法分配律。
17x+12-x^{2}=6x
從兩邊減去 x^{2}。
17x+12-x^{2}-6x=0
從兩邊減去 6x。
11x+12-x^{2}=0
合併 17x 和 -6x 以取得 11x。
-x^{2}+11x+12=0
重新排列多項式,使其以標準式表示。由乘冪數最高的項目到乘冪數最低的項目依序排列。
a+b=11 ab=-12=-12
若要解出方程式,請對左邊進行分組因數分解。首先,左邊必須重寫為 -x^{2}+ax+bx+12。 若要取得 a 和 b,請預設求解的方程式。
-1,12 -2,6 -3,4
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為正數,正數具有比負數更大的絕對值。 列出乘積為 -12 的所有此類整數組合。
-1+12=11 -2+6=4 -3+4=1
計算每個組合的總和。
a=12 b=-1
該解的總和為 11。
\left(-x^{2}+12x\right)+\left(-x+12\right)
將 -x^{2}+11x+12 重寫為 \left(-x^{2}+12x\right)+\left(-x+12\right)。
-x\left(x-12\right)-\left(x-12\right)
在第一個組因式分解是 -x,且第二個組是 -1。
\left(x-12\right)\left(-x-1\right)
使用分配律來因式分解常用項 x-12。
x=12 x=-1
若要尋找方程式方案,請求解 x-12=0 並 -x-1=0。
\left(x+6\right)\times 2+x\times 15=x\left(x+6\right)
變數 x 不能等於 -6,0 中的任何值,因為未定義除數為零。 對方程式兩邊同時乘上 x\left(x+6\right),這是 x,x+6 的最小公倍數。
2x+12+x\times 15=x\left(x+6\right)
計算 x+6 乘上 2 時使用乘法分配律。
17x+12=x\left(x+6\right)
合併 2x 和 x\times 15 以取得 17x。
17x+12=x^{2}+6x
計算 x 乘上 x+6 時使用乘法分配律。
17x+12-x^{2}=6x
從兩邊減去 x^{2}。
17x+12-x^{2}-6x=0
從兩邊減去 6x。
11x+12-x^{2}=0
合併 17x 和 -6x 以取得 11x。
-x^{2}+11x+12=0
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-11±\sqrt{11^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 -1 代入 a,將 11 代入 b,以及將 12 代入 c。
x=\frac{-11±\sqrt{121-4\left(-1\right)\times 12}}{2\left(-1\right)}
對 11 平方。
x=\frac{-11±\sqrt{121+4\times 12}}{2\left(-1\right)}
-4 乘上 -1。
x=\frac{-11±\sqrt{121+48}}{2\left(-1\right)}
4 乘上 12。
x=\frac{-11±\sqrt{169}}{2\left(-1\right)}
將 121 加到 48。
x=\frac{-11±13}{2\left(-1\right)}
取 169 的平方根。
x=\frac{-11±13}{-2}
2 乘上 -1。
x=\frac{2}{-2}
現在解出 ± 為正號時的方程式 x=\frac{-11±13}{-2}。 將 -11 加到 13。
x=-1
2 除以 -2。
x=-\frac{24}{-2}
現在解出 ± 為負號時的方程式 x=\frac{-11±13}{-2}。 從 -11 減去 13。
x=12
-24 除以 -2。
x=-1 x=12
現已成功解出方程式。
\left(x+6\right)\times 2+x\times 15=x\left(x+6\right)
變數 x 不能等於 -6,0 中的任何值,因為未定義除數為零。 對方程式兩邊同時乘上 x\left(x+6\right),這是 x,x+6 的最小公倍數。
2x+12+x\times 15=x\left(x+6\right)
計算 x+6 乘上 2 時使用乘法分配律。
17x+12=x\left(x+6\right)
合併 2x 和 x\times 15 以取得 17x。
17x+12=x^{2}+6x
計算 x 乘上 x+6 時使用乘法分配律。
17x+12-x^{2}=6x
從兩邊減去 x^{2}。
17x+12-x^{2}-6x=0
從兩邊減去 6x。
11x+12-x^{2}=0
合併 17x 和 -6x 以取得 11x。
11x-x^{2}=-12
從兩邊減去 12。 從零減去任何項目的結果都會是該項目的負值。
-x^{2}+11x=-12
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
\frac{-x^{2}+11x}{-1}=-\frac{12}{-1}
將兩邊同時除以 -1。
x^{2}+\frac{11}{-1}x=-\frac{12}{-1}
除以 -1 可以取消乘以 -1 造成的效果。
x^{2}-11x=-\frac{12}{-1}
11 除以 -1。
x^{2}-11x=12
-12 除以 -1。
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=12+\left(-\frac{11}{2}\right)^{2}
將 -11 (x 項的係數) 除以 2 可得到 -\frac{11}{2}。接著,將 -\frac{11}{2} 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}-11x+\frac{121}{4}=12+\frac{121}{4}
-\frac{11}{2} 的平方是將分式的分子和分母兩個都平方。
x^{2}-11x+\frac{121}{4}=\frac{169}{4}
將 12 加到 \frac{121}{4}。
\left(x-\frac{11}{2}\right)^{2}=\frac{169}{4}
因數分解 x^{2}-11x+\frac{121}{4}。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
取方程式兩邊的平方根。
x-\frac{11}{2}=\frac{13}{2} x-\frac{11}{2}=-\frac{13}{2}
化簡。
x=12 x=-1
將 \frac{11}{2} 加到方程式的兩邊。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}