Tìm a
a=3
a=0
Chia sẻ
Đã sao chép vào bảng tạm
a\left(a-3\right)=0
Phân tích a thành thừa số.
a=0 a=3
Để tìm các giải pháp phương trình, hãy giải quyết a=0 và a-3=0.
a^{2}-3a=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, -3 vào b và 0 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-3\right)±3}{2}
Lấy căn bậc hai của \left(-3\right)^{2}.
a=\frac{3±3}{2}
Số đối của số -3 là 3.
a=\frac{6}{2}
Bây giờ, giải phương trình a=\frac{3±3}{2} khi ± là số dương. Cộng 3 vào 3.
a=3
Chia 6 cho 2.
a=\frac{0}{2}
Bây giờ, giải phương trình a=\frac{3±3}{2} khi ± là số âm. Trừ 3 khỏi 3.
a=0
Chia 0 cho 2.
a=3 a=0
Hiện phương trình đã được giải.
a^{2}-3a=0
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
a^{2}-3a+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Chia -3, hệ số của số hạng x, cho 2 để có kết quả -\frac{3}{2}. Sau đó, cộng bình phương của -\frac{3}{2} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
a^{2}-3a+\frac{9}{4}=\frac{9}{4}
Bình phương -\frac{3}{2} bằng cách bình phương cả tử số và mẫu số của phân số.
\left(a-\frac{3}{2}\right)^{2}=\frac{9}{4}
Phân tích a^{2}-3a+\frac{9}{4} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Lấy căn bậc hai của cả hai vế của phương trình.
a-\frac{3}{2}=\frac{3}{2} a-\frac{3}{2}=-\frac{3}{2}
Rút gọn.
a=3 a=0
Cộng \frac{3}{2} vào cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}