Tính giá trị
-\frac{3229}{2835}\approx -1,138977072
Phân tích thành thừa số
-\frac{3229}{2835} = -1\frac{394}{2835} = -1,1389770723104056
Chia sẻ
Đã sao chép vào bảng tạm
\left(-\left(\frac{45}{63}-\frac{7}{63}\right)\right)\times \frac{7}{5}-\frac{5}{7}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Bội số chung nhỏ nhất của 7 và 9 là 63. Chuyển đổi \frac{5}{7} và \frac{1}{9} thành phân số với mẫu số là 63.
\left(-\frac{45-7}{63}\right)\times \frac{7}{5}-\frac{5}{7}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Do \frac{45}{63} và \frac{7}{63} có cùng mẫu số, hãy trừ chúng bằng cách trừ các tử số cho nhau.
-\frac{38}{63}\times \frac{7}{5}-\frac{5}{7}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Lấy 45 trừ 7 để có được 38.
\frac{-38\times 7}{63\times 5}-\frac{5}{7}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Nhân -\frac{38}{63} với \frac{7}{5} bằng cách nhân tử số với tử số và mẫu số với mẫu số.
\frac{-266}{315}-\frac{5}{7}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Thực hiện nhân trong phân số \frac{-38\times 7}{63\times 5}.
-\frac{38}{45}-\frac{5}{7}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Rút gọn phân số \frac{-266}{315} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 7.
-\frac{266}{315}-\frac{225}{315}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Bội số chung nhỏ nhất của 45 và 7 là 315. Chuyển đổi -\frac{38}{45} và \frac{5}{7} thành phân số với mẫu số là 315.
\frac{-266-225}{315}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Do -\frac{266}{315} và \frac{225}{315} có cùng mẫu số, hãy trừ chúng bằng cách trừ các tử số cho nhau.
-\frac{491}{315}+\left(-\frac{2}{9}+\sqrt{16}\right)\times \frac{1}{9}
Lấy -266 trừ 225 để có được -491.
-\frac{491}{315}+\left(-\frac{2}{9}+4\right)\times \frac{1}{9}
Tính căn bậc hai của 16 và được kết quả 4.
-\frac{491}{315}+\left(-\frac{2}{9}+\frac{36}{9}\right)\times \frac{1}{9}
Chuyển đổi 4 thành phân số \frac{36}{9}.
-\frac{491}{315}+\frac{-2+36}{9}\times \frac{1}{9}
Do -\frac{2}{9} và \frac{36}{9} có cùng mẫu số, hãy cộng chúng bằng cách cộng các tử số với nhau.
-\frac{491}{315}+\frac{34}{9}\times \frac{1}{9}
Cộng -2 với 36 để có được 34.
-\frac{491}{315}+\frac{34\times 1}{9\times 9}
Nhân \frac{34}{9} với \frac{1}{9} bằng cách nhân tử số với tử số và mẫu số với mẫu số.
-\frac{491}{315}+\frac{34}{81}
Thực hiện nhân trong phân số \frac{34\times 1}{9\times 9}.
-\frac{4419}{2835}+\frac{1190}{2835}
Bội số chung nhỏ nhất của 315 và 81 là 2835. Chuyển đổi -\frac{491}{315} và \frac{34}{81} thành phân số với mẫu số là 2835.
\frac{-4419+1190}{2835}
Do -\frac{4419}{2835} và \frac{1190}{2835} có cùng mẫu số, hãy cộng chúng bằng cách cộng các tử số với nhau.
-\frac{3229}{2835}
Cộng -4419 với 1190 để có được -3229.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}