Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\left(2x+3\right)^{2}=24x
Nhân 2x+3 với 2x+3 để có được \left(2x+3\right)^{2}.
4x^{2}+12x+9=24x
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(2x+3\right)^{2}.
4x^{2}+12x+9-24x=0
Trừ 24x khỏi cả hai vế.
4x^{2}-12x+9=0
Kết hợp 12x và -24x để có được -12x.
a+b=-12 ab=4\times 9=36
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là 4x^{2}+ax+bx+9. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Vì ab là dương, a và b có cùng dấu hiệu. Vì a+b là âm, a và b đều là số âm. Liệt kê tất cả cặp số nguyên có tích bằng 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tính tổng của mỗi cặp.
a=-6 b=-6
Nghiệm là cặp có tổng bằng -12.
\left(4x^{2}-6x\right)+\left(-6x+9\right)
Viết lại 4x^{2}-12x+9 dưới dạng \left(4x^{2}-6x\right)+\left(-6x+9\right).
2x\left(2x-3\right)-3\left(2x-3\right)
Phân tích 2x trong đầu tiên và -3 trong nhóm thứ hai.
\left(2x-3\right)\left(2x-3\right)
Phân tích số hạng chung 2x-3 thành thừa số bằng cách sử dụng thuộc tính phân phối.
\left(2x-3\right)^{2}
Viết lại thành bình phương nhị thức.
x=\frac{3}{2}
Giải 2x-3=0 để tìm nghiệm cho phương trình.
\left(2x+3\right)^{2}=24x
Nhân 2x+3 với 2x+3 để có được \left(2x+3\right)^{2}.
4x^{2}+12x+9=24x
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(2x+3\right)^{2}.
4x^{2}+12x+9-24x=0
Trừ 24x khỏi cả hai vế.
4x^{2}-12x+9=0
Kết hợp 12x và -24x để có được -12x.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 9}}{2\times 4}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 4 vào a, -12 vào b và 9 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 9}}{2\times 4}
Bình phương -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 9}}{2\times 4}
Nhân -4 với 4.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 4}
Nhân -16 với 9.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 4}
Cộng 144 vào -144.
x=-\frac{-12}{2\times 4}
Lấy căn bậc hai của 0.
x=\frac{12}{2\times 4}
Số đối của số -12 là 12.
x=\frac{12}{8}
Nhân 2 với 4.
x=\frac{3}{2}
Rút gọn phân số \frac{12}{8} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 4.
\left(2x+3\right)^{2}=24x
Nhân 2x+3 với 2x+3 để có được \left(2x+3\right)^{2}.
4x^{2}+12x+9=24x
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(2x+3\right)^{2}.
4x^{2}+12x+9-24x=0
Trừ 24x khỏi cả hai vế.
4x^{2}-12x+9=0
Kết hợp 12x và -24x để có được -12x.
4x^{2}-12x=-9
Trừ 9 khỏi cả hai vế. Số không trừ đi bất kỳ giá trị nào cũng bằng số âm của giá trị đó.
\frac{4x^{2}-12x}{4}=-\frac{9}{4}
Chia cả hai vế cho 4.
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{9}{4}
Việc chia cho 4 sẽ làm mất phép nhân với 4.
x^{2}-3x=-\frac{9}{4}
Chia -12 cho 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
Chia -3, hệ số của số hạng x, cho 2 để có kết quả -\frac{3}{2}. Sau đó, cộng bình phương của -\frac{3}{2} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}-3x+\frac{9}{4}=\frac{-9+9}{4}
Bình phương -\frac{3}{2} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}-3x+\frac{9}{4}=0
Cộng -\frac{9}{4} với \frac{9}{4} bằng cách tìm một mẫu số chung, rồi cộng các tử số. Sau đó, rút gọn phân số đó thành số hạng nhỏ nhất, nếu có thể.
\left(x-\frac{3}{2}\right)^{2}=0
Phân tích x^{2}-3x+\frac{9}{4} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{0}
Lấy căn bậc hai của cả hai vế của phương trình.
x-\frac{3}{2}=0 x-\frac{3}{2}=0
Rút gọn.
x=\frac{3}{2} x=\frac{3}{2}
Cộng \frac{3}{2} vào cả hai vế của phương trình.
x=\frac{3}{2}
Hiện phương trình đã được giải. Nghiệm là như nhau.