Tính giá trị
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}+С
Lấy vi phân theo x
x+\sqrt[3]{x}+\frac{1}{x^{2}}
Chia sẻ
Đã sao chép vào bảng tạm
\int x\mathrm{d}x+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
Tích hợp tổng số hạng.
\frac{x^{2}}{2}+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x\mathrm{d}x bằng \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}+\int \frac{1}{x^{2}}\mathrm{d}x
Viết lại \sqrt[3]{x} dưới dạng x^{\frac{1}{3}}. Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{\frac{1}{3}}\mathrm{d}x bằng \frac{x^{\frac{4}{3}}}{\frac{4}{3}}. Rút gọn.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int \frac{1}{x^{2}}\mathrm{d}x bằng -\frac{1}{x}.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}+С
Nếu F\left(x\right) là nguyên hàm của f\left(x\right) thì tập hợp mọi nguyên hàm của f\left(x\right) sẽ được tính bằng F\left(x\right)+C. Vì vậy, hãy thêm hằng số tích phân C\in \mathrm{R} vào kết quả.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}