Tính giá trị
2+\frac{6}{r}
Khai triển
2+\frac{6}{r}
Chia sẻ
Đã sao chép vào bảng tạm
\frac{\left(r+3\right)\left(2r^{2}-18\right)}{\left(r-3\right)\left(r^{2}+3r\right)}
Chia \frac{r+3}{r-3} cho \frac{r^{2}+3r}{2r^{2}-18} bằng cách nhân \frac{r+3}{r-3} với nghịch đảo của \frac{r^{2}+3r}{2r^{2}-18}.
\frac{2\left(r-3\right)\left(r+3\right)^{2}}{r\left(r-3\right)\left(r+3\right)}
Phân tích thành thừa số cho biểu thức chưa được phân tích.
\frac{2\left(r+3\right)}{r}
Giản ước \left(r-3\right)\left(r+3\right) ở cả tử số và mẫu số.
\frac{2r+6}{r}
Mở rộng biểu thức.
\frac{\left(r+3\right)\left(2r^{2}-18\right)}{\left(r-3\right)\left(r^{2}+3r\right)}
Chia \frac{r+3}{r-3} cho \frac{r^{2}+3r}{2r^{2}-18} bằng cách nhân \frac{r+3}{r-3} với nghịch đảo của \frac{r^{2}+3r}{2r^{2}-18}.
\frac{2\left(r-3\right)\left(r+3\right)^{2}}{r\left(r-3\right)\left(r+3\right)}
Phân tích thành thừa số cho biểu thức chưa được phân tích.
\frac{2\left(r+3\right)}{r}
Giản ước \left(r-3\right)\left(r+3\right) ở cả tử số và mẫu số.
\frac{2r+6}{r}
Mở rộng biểu thức.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}