Chuyển đến nội dung chính
Tính giá trị
Tick mark Image
Lấy vi phân theo w
Tick mark Image

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\frac{5\left(w-7\right)}{\left(w-7\right)\left(w+1\right)}+\frac{8\left(w+1\right)}{\left(w-7\right)\left(w+1\right)}
Để cộng hoặc trừ các biểu thức, khai triển các biểu thức để làm cho các mẫu số giống nhau. Bội số chung nhỏ nhất của w+1 và w-7 là \left(w-7\right)\left(w+1\right). Nhân \frac{5}{w+1} với \frac{w-7}{w-7}. Nhân \frac{8}{w-7} với \frac{w+1}{w+1}.
\frac{5\left(w-7\right)+8\left(w+1\right)}{\left(w-7\right)\left(w+1\right)}
Do \frac{5\left(w-7\right)}{\left(w-7\right)\left(w+1\right)} và \frac{8\left(w+1\right)}{\left(w-7\right)\left(w+1\right)} có cùng mẫu số, hãy cộng chúng bằng cách cộng các tử số với nhau.
\frac{5w-35+8w+8}{\left(w-7\right)\left(w+1\right)}
Thực hiện nhân trong 5\left(w-7\right)+8\left(w+1\right).
\frac{13w-27}{\left(w-7\right)\left(w+1\right)}
Kết hợp như các số hạng trong 5w-35+8w+8.
\frac{13w-27}{w^{2}-6w-7}
Khai triển \left(w-7\right)\left(w+1\right).
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{5\left(w-7\right)}{\left(w-7\right)\left(w+1\right)}+\frac{8\left(w+1\right)}{\left(w-7\right)\left(w+1\right)})
Để cộng hoặc trừ các biểu thức, khai triển các biểu thức để làm cho các mẫu số giống nhau. Bội số chung nhỏ nhất của w+1 và w-7 là \left(w-7\right)\left(w+1\right). Nhân \frac{5}{w+1} với \frac{w-7}{w-7}. Nhân \frac{8}{w-7} với \frac{w+1}{w+1}.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{5\left(w-7\right)+8\left(w+1\right)}{\left(w-7\right)\left(w+1\right)})
Do \frac{5\left(w-7\right)}{\left(w-7\right)\left(w+1\right)} và \frac{8\left(w+1\right)}{\left(w-7\right)\left(w+1\right)} có cùng mẫu số, hãy cộng chúng bằng cách cộng các tử số với nhau.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{5w-35+8w+8}{\left(w-7\right)\left(w+1\right)})
Thực hiện nhân trong 5\left(w-7\right)+8\left(w+1\right).
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{13w-27}{\left(w-7\right)\left(w+1\right)})
Kết hợp như các số hạng trong 5w-35+8w+8.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{13w-27}{w^{2}+w-7w-7})
Áp dụng tính chất phân phối bằng cách nhân mỗi số hạng của w-7 với một số hạng của w+1.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{13w-27}{w^{2}-6w-7})
Kết hợp w và -7w để có được -6w.
\frac{\left(w^{2}-6w^{1}-7\right)\frac{\mathrm{d}}{\mathrm{d}w}(13w^{1}-27)-\left(13w^{1}-27\right)\frac{\mathrm{d}}{\mathrm{d}w}(w^{2}-6w^{1}-7)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Đối với hai hàm khả vi bất kỳ, đạo hàm của thương hai hàm bằng mẫu số nhân với đạo hàm của tử số trừ đi tử số nhân với đạo hàm của mẫu số, chia tất cả cho bình phương của mẫu số.
\frac{\left(w^{2}-6w^{1}-7\right)\times 13w^{1-1}-\left(13w^{1}-27\right)\left(2w^{2-1}-6w^{1-1}\right)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Đạo hàm của một đa thức là tổng các đạo hàm của các số hạng trong đa thức đó. Đạo hàm của mọi hằng số là 0. Đạo hàm của ax^{n} là nax^{n-1}.
\frac{\left(w^{2}-6w^{1}-7\right)\times 13w^{0}-\left(13w^{1}-27\right)\left(2w^{1}-6w^{0}\right)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Rút gọn.
\frac{w^{2}\times 13w^{0}-6w^{1}\times 13w^{0}-7\times 13w^{0}-\left(13w^{1}-27\right)\left(2w^{1}-6w^{0}\right)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Nhân w^{2}-6w^{1}-7 với 13w^{0}.
\frac{w^{2}\times 13w^{0}-6w^{1}\times 13w^{0}-7\times 13w^{0}-\left(13w^{1}\times 2w^{1}+13w^{1}\left(-6\right)w^{0}-27\times 2w^{1}-27\left(-6\right)w^{0}\right)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Nhân 13w^{1}-27 với 2w^{1}-6w^{0}.
\frac{13w^{2}-6\times 13w^{1}-7\times 13w^{0}-\left(13\times 2w^{1+1}+13\left(-6\right)w^{1}-27\times 2w^{1}-27\left(-6\right)w^{0}\right)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Để nhân lũy thừa của cùng một cơ số, hãy cộng các số mũ với nhau.
\frac{13w^{2}-78w^{1}-91w^{0}-\left(26w^{2}-78w^{1}-54w^{1}+162w^{0}\right)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Rút gọn.
\frac{-13w^{2}+54w^{1}-253w^{0}}{\left(w^{2}-6w^{1}-7\right)^{2}}
Kết hợp giống như các số hạng.
\frac{-13w^{2}+54w-253w^{0}}{\left(w^{2}-6w-7\right)^{2}}
Với mọi số hạng t, t^{1}=t.
\frac{-13w^{2}+54w-253}{\left(w^{2}-6w-7\right)^{2}}
Với mọi số hạng t trừ 0, t^{0}=1.